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GENERAL OVERVIEW 

1. Ozone 

In recent years the ozone molecule has received considerable attention in 

the public eye. Its importance in atmospheric chemistry, especially its 

absorption of ultraviolet radiation, has been studied for some time by 

chemists and physicists. On the one hand, excessive generation of ozone in 

exhaust gases of combustion processes in metropolitan areas is considered a 

health hazard, on the other hand, the layer of ozone in the upper atmosphere 

is known to be responsible for shielding the surface of our planet from levels 

of ultraviolet radiation which would be fatal to many forms of life. The 

discovery that the amount of the ozone in the upper atmosphere is 

decreasing, due in great part to the emissions of our technological society, 

has therefore stimulated ozone research. 

The need for theoretical studies of ozone is fueled by the fact that 

experimental methods have so far been unable to provide more than basic 

information about the electronic and vibrational structures of ozone. 

Moreover, experiments only yield information about near-equilibrium 

structures, vibrational energies, and excitation energies, but little to no 

information about geometries far from equilibrium or about excited states. 

Most of the information gained from experiment about the excited states of 
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ozone is based on extensive measurements of the four observed vibronic 

bands (named Wulf, Chappuis, Huggins, and Hartley)[l]. 

Even the experimental picture of the ground state is far from complete. 

Although the equilibrium geometry, bent at an angle of 116°, was elucidated 

many years ago, the second minimum, a ring structure predicted by 

theoretical calculations for over two decades, has yet to be experimentally 

observed. Furthermore, Xantheas et. al. [2], in a detailed theoretical study of 

the ground state of ozone in the constrained coordinate space, recently 

uncovered new and unexpected features. While determining the ring-opening 

transition state, they found that the ground state surface intersects the first 

excited state surface of the same symmetry in the region of the transition 

state. This is one of the first documented cases of an intersection of two 

states of like symmetry in a common molecule. Furthermore, not only does 

the intersection lie within 0.1Â of the ring-opening transition state, it also 

lies within 0.1Â of the global minimum of the excited state within Cg^. 

The mentioned observations imply that the ground state and the lowest 

excited state of like symmetry strongly interact in certain regions of 

coordinate space. It is therefore apparent that a clearer understanding of the 

situation can only be given by a global examination of the respective 

potential energy surfaces. 
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2. Potential Energy Surfaces (PES) 

The concept of the Potential Energy Surface (PES) is central to chemical 

physics. It arises naturally jfrom the insight of Bom and Oppenheimer [3] 

that the motion of the nuclei and that of the electrons within a molecule can 

be treated separately because the electrons move much more quickly then the 

nuclei. Therefore, the equations describing the motion of the electrons can be 

solved within the constant field of motionless nuclei. The solution of this 

problem yields a set of electronic wavefunctions Vn(r,q) which are functions of 

the electronic coordinates r and the fixed nuclear coordinates q. The 

corresponding electronic energies E„(q) are functions of the nuclear 

coordinates. These electronic wavefunctions can then be used to solve the 

equations for the nuclear motions by expressing the total wavefunction in the 

form Y(r,q) = Xn(Q)¥n(ï^><l)- This approach leads to coupled differential 

equations for the nuclear wavefunctions Xn(q) in which the electronic energies 

En(q) play the roles of potential energies. The determination of the electronic 

wavefunctions \j/n(r,q) traditionally lies in the field of quantum chemistry 

while that of the nuclear wavefimctions Xn(Q) traditionally lies in the field of 

dynamics. In recent years the two fields have begun to merge, with quantum 

chemists performing dynamics calculations, and dynamicists using quantum 

chemical results. 

The potential energies, E„(q), of the molecule are functions of the nuclear 
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coordinates and are therefore called potential energy surfaces (PES). The 

PES are multi-dimensional hyper-surfaces in the coordinate space of the 

nuclei. The molecule (or molecular ensemble) can be visualized as "moving 

on its potential energy surface". The lowest points on a PES, its minima, 

correspond to stable equilibrium structures, whereas the highest points 

correspond to unstable, high energy structures. The low energy channels 

connecting the minima are reaction paths, with the highest energy points 

along such paths, the transition states, being saddlepoints with one negative 

eigenvalue. The difference in height between a minimum on a PES and the 

transition state between it an another minimum provides an approximation 

to the activation energy for that reaction. 

Acquisition of accurate knowledge about PES is still in its infancy. The 

experimental approach is limited to areas of PES near the minima and 

activation energies of reactions. The theoretical approach is limited, too, in 

that it requires demanding ab-initio calculations which, not only must be 

quite accurate but, moreover, must be carried out at many points in the 

space of the molecular internal coordinates. However, with the advent of 

high-speed computers and advances in quantum chemical methods it is now 

possible to get fairly accurate potential energy surfaces for small molecules, 

such as those obtained by the present work. 
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3. Present Investigation 

The theoretical observations mentioned in the first subsection, coupled 

with the experimental importance of ozone, provide the impetus for the 

present theoretical study of the two lowest ^A' potential energy surfaces of 

this molecule. The goal of this work is twofold. A large part of it involves 

various aspects of the intersection of the two states, which is one of the 

remarkable features of these potential energy surfaces. Also of interest, 

however, are the global characteristics of the two potential energy surfaces: 

the location of all minima, transition states, the dissociative pathways, and 

rearrangement pathways of the molecule. This involves not only the 

formidable task of accurately mapping out the surfaces in the full three-

dimensional coordinate space of Cg symmetry, but the equally formidable task 

of interpreting all of this three-dimensional information. 

This dissertation consists of six investigations presented as papers ready 

for submission to scholarly publications. One paper (Paper H) has already 

been published in the Journal of Chemical Physics, the rest will be submitted 

subsequently. These six papers are presented as published or submitted, 

with the references and figures for each paper included. The papers are 

preceded by a general overview, and are followed by a general summary and 

a list of references cited in the overview and general summary. 
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The dissertation consists of two sets of investigations. The first set 

consists of three formal theoretical developments which provide a necessary 

basis for the three investigations of ozone in the second part. 

In the first paper, the problem of the internal coordinates of a triatomic 

molecule is addressed. In view of the equivalence of the atoms, the 

perimetric scale-shape coordinates are chosen. Their definition and relation 

to other triatomic coordinates is presented. Furthermore, the important 

relations between these coordinates and the corresponding molecular 

geometries are discussed in detail. These coordinates are used later in 

papers V and VI. 

Paper 11 contains a review of the relevant theory of intersections between 

potential energy surfaces and, in particular, an in depth analysis of the 

behavior of potential energy surfaces near an intersection. The theoiy in this 

paper is referred to throughout the rest of the dissertation. 

Paper m presents a novel, "quantum chemical" method for constructing 

diabatic states fi-om adiabatic states. The eigenstates of the electronic 

hamiltonian, produced by the ab-initio methods used to determine the 

potential energy surfaces of this study are adiabatic states which, near real 

or avoided crossings, have large coupling terms with respect to nuclear 

motion. By transforming to diabatic states, this coupling can be greatly 

reduced and, moreover, the electronic aspects of their crossing can be 
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elucidated. In the next paper, IV, this approach is shown to be effective in 

analyzing the causes of the intersection between the two lowest states of 

ozone in Cgy symmetry. 

The second part of this dissertation consists of investigations into the 

actual potential energy surfaces of ozone. 

Paper IV raises the question "Why do these two states of like symmetry 

cross?". It provides an in-depth analysis and discussion of the causes for the 

intersection in Cgv- By transforming the adiabatic states to diabatic states, 

one is able to determine the interaction matrix Hjj between them. Careful 

examination of the matrix elements and relating them to the electronic 

structures of the two states leads to an understanding of the reasons for the 

conical intersection between them. 

This point of intersection of the two surfaces in Cgy (a two-dimensional 

coordinate subspace), as determined by Xantheas et. al. [2], is actually part of 

a one-dimensional intersection seam in the full three-dimensional coordinate 

space which has C, symmetry. This seam is determined in Paper V. A novel 

method for determining an intersection point in a two-dimensional coordinate 

space is also presented. 

Paper VI, finally, deals with the global shapes of the potential energy 

surfaces of the two states. Global mappings of the two potential energy 

surfaces over large parts of the full coordinate space are determined. The 
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varions critical points of the two surfaces are found. Dissociation and 

rearrangement pathways are discussed. 
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PAPER I. PERIMETRIC SCALE-SHAPE COORDINATES FOR 

TRIATOMIC MOLECULES 
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ABSTRACT 

Perimetric nuclear coordinates of a triatomic molecule treat all three 

nuclei equivalently and are not subject to the triangle conditions. Through 

an appropriate orthogonal transformation they can be separated into one 

scale coordinate, viz. the circumference, and two shape coordinates, which are 

determined by the angles. The parameter space of the shape coordinates is 

an equilateral triangle. The basic formulas are given and the relationship 

between points in coordinate space and molecular shapes are elucidated. 
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1. INTRODUCTION 

Many features of polyatomic potential energy surfaces (PES) do not 

appear in the paradigm of diatomic potential energy curves. Moreover, 

because of our inability to "see" in more than three dimensions, their 

visualization is difficult. Triatomic molecules, being the smallest molecules 

with multi-dimensional PES, represent the necessary next step in 

understanding PES depending on more than one internal coordinate. They 

have three internal coordinates and furnish the simplest material on which 

to study and become famiHar with features of general PES. Yet, already in 

this case, an effort is required in order to relate the points in the internal 

coordinate space to the actual molecular shapes. We encountered this 

problem in the accompanying study of ozone [1] which lead to the account 

presented below. 

In discussions of triatomic molecules, it is desirable to be able to express 

and visualize potential energy surfaces or other properties as functions of the 

three internal coordinates in a way that treats all three atoms on an equal 

footing. A relatively simple parametrization which satisfies this requirement 

is given by the so-called perimetric coordinates. They were introduced in 

quantum chemistry by James and Coolidge [2] in the thirties and used later 

by Pekeris [3], in both instances for electronic calculations on the He atom. 



www.manaraa.com

13 

Davidson [4] seems to have been the first to use and discuss them for the 

nuclear coordinates of triatomics. We shall examine these coordinates here 

in some detail. We shall show how they can be separated into scale and 

shape coordinates and establish the relationship between them and the so-

called "symmetric coordinates" of Murrel et.al. [5]. We shall furthermore 

discuss the meaning of various aspects of the parameter space for the 

molecular geometries. 
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2. PERIMETRIC COORDINATES 

2.1 Definition 

The three distances rgg, r^g between the nuclei N^, Ng, Ng are the most 

natural independent coordinates that treat the three nuclei equivalently. 

They have, however, the drawback of being subject to the triangle conditions 

r^+ijk ^ rjjj. This shortcoming is eliminated by the perimetric coordinates 

which are defined as 

Si = (r^j + % - rjk)/2 (1) 

where {ij,k) represents every permutation of (1,2,3). Inversion of Eq. (1) 

yields 

Si + s. = r^j (2) 

and Eqs. (1), (2) are equivalent to the equations 

Sj + rjjj = s = r/2, (3) 

where 

s = (Si + Si + Sg), (4) 

r = (ri2 + rgg + rj. (5) 

The geometric meanings of Sp Sg, are illustrated by Figure 1 which is self-

evident in view of Eq. (2). The points which separate the two segments s, 

and Sj on the side are, in fact, the points where the inscribed circle touches 

the three sides of the molecular triangle [6]. The lines connecting the comers 

to the center of the inscribed circle bisect the respective angles. 
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2.2 Scale and Shape 

The relation of the lengths and r,y to the angles can be derived from the 

formula 

ry = 2Rsin(j>k (6) 

where R is the radius of the circumscribed circle [6]. From Eq. (6) follows 

r^/r = sinV sm(^ (7) 
1 

and 

Sj = sfj (8) 

with 

fi = fi((l)i,(t)2,<t)3) = l-2sin%/g sin(|)k. (9) 
k 

Manifestly, 

S fi = 1- (10) 
i 

It is apparent that, in Eq. (8), the parameter s determines the overall size of 

the molecule, it is a scale factor. The angular functions ^2» 4)3) on the 

other hand determine the angular appearance of the molecule, they are shape 

factors. By virtue of the relation ^i+c})2+<l)3=7c, the right-hand side of Eq. (9) 

can be recast in the form 

fi = tan-i^j-tan-i))^. (11) 
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2.3 Parameter Space 

Let the parameter space be spaimed by a cartesian axis system along 

which the (82,82,83) are taken as coordinates. The three perimetric coordinates 

vary independently from zero to infinity. Hence, only the first octant is used. 

In this parameter space, molecules of the same angular 8hape are given by 

the coordinates of Eq. (8) with constant factors f, i.e. by points which fall on 

straight rays through the origin, their distances being proportional to s. The 

points along the diagonal of the first octant, for which 8^=82=83 correspond to 

equilateral molecules for which /j=^=^=l/3. 

Isosceles molecules correspond to points on the planes 8—8/, for example, 

the plane 8^=82 contains all isosceles triangles with the apex at the nucleus 

N3. 

The three coordinate planes s~0 contain the points representing linear 

molecules. For example, the Sj-Sg plane, corresponding to 83=0 contains the 

linear molecules with nucleus Ng in between nuclei Nj and Ng and with the 

intemuclear distances r_j3=Sj, ^23=85, rj2=ri3+r23=Sj+S2 so that all molecules 

with ri2=constant lie on the straight line intersecting the and Sg axis at 45°. 

The three coordinate axes correspond to the coincidence of two nuclei. 

E.g. the 8j axis corresponds to 82=83=0 and the coincidence of nuclei Ng and 

Ng, with rj2=rj3=8i. The origin corresponds to the coincidence of all three 

nuclei. 
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3. SEPARATION OF SCALE AND SHAPE COORDINATES 

3.1 Rotation of Coordinate Basis 

A separation of scale and shape coordinates is obtained by considering all 

molecules with a given circumference r=2s. By virtue of Eq. (8) they are 

given by the points lying in the plane 

Si+Sg+Sg = s = constant (12) 

i.e. in a plane perpendicular to the diagonal of the first octant and 

intercepting all three axes at a distance s=r/2 from the origin. Accordingly, 

we introduce a new right handed set of basis vectors d^, dg, dg by the 

d. 4 
ei -1/2 -1/V6 1/V6 

«2 I/V2 -i/Ve l/^^6 
©3 0 2/V6 i/Ve 

(13) 

where eg denote the unit basis vectors along the axis s^, Sg, s^. Since dg 

points along the first octant diagonal, the vectors (d^, dg) span a plane 

passing through the origin which is parallel to all planes s=constant. The 

orientation of these basis vectors is shown in Figure 2. If Xj, Xg denote the 

new coordinates along the vectors (d^, dg, dg), then 

E ©iSi = £ d^Xk , (14) 
i k 

and the transformation between (s^ and (x^, X2, x^) is given by the same 
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orthogonal transformation: 

Sj -I/V2 -1/V6 l/VS 

52 I/V2 -1/V6 I/V3 

53 0 2/V(6) I/V3 

(15) 

It entails 

Xg = (Si+Sg+SgV^F = s/^ = t/2^/3 , (16) 

confirming that the plane s=constant is the plane %3=constant and spanned 

by the coordinates (x^, %^). 

Since the three-dimensional parameter space is hmited to the first octant, 

the two-dimensional parameter plane for x^sconstant is limited to an 

equilateral triangle as illustrated perspectively in Figure 3. The first octant 

diagonal penetrates this triangle in its origin Xj=X2=0 at a distance x^ from 

the origin of the Sj, Sg, S3 coordinate system. The coordinates (s;, s^, S3) of a 

number of points on the triangle s = constant are also given on Figure 3. 

From these coordinates the dimensions of the triangle are found to be as 

follows: 

Side = s/^/2, Height = sl^lzi2. The origin lies 2/3 

of the way firom the corner to the opposite side. (17) 

Figure 4 provides a plane view of this triangle with the coordinate axis x^, Xz 

on it. The comers are numbered by the axes Sp Sg, S3 penetrating the plane 

at those points. Also indicated are the coordinates {xp x^ of a number of 
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points, calculated from Eq. (15) and scaled by s. 

3.2 Scale-Independent Shape Coordinates 

The linear size of the parameter triangle spanned by x^, Xg is proportional 

to the molecular scale parameter s. The shape of the molecule is given by the 

relative position of the representative point inside the triangle, i.e. by the two 

scale-independent parameters 

= x/s, = Vs. (18) 

These two independent shape coordinates are equivalent to the three angles 

01» 4*2, ^35 which are subject to the constraint (j)i+(j)2+(|)3=7t. By virtue of the 

relations s—sf^^ [See Eq. (8)] and the orthogonal transformation, Eq. (15), 

between the and the Sj, the two independent shape coordinates are 

related to the three dependent shape factors of Eqs. (9) and (11) by the 

orthogonal transformation 

^2 ^3=1/V3 

-1/V2 -1/V6 1/V3 

f2 1/V2 -i/Ve 1/V3 

f3 0 2/V6 1/V3 

where we formally introduced ^3=Xg/s=l/V3 [See Eq. (16)]. Manifestly, the 

parameter space of the scale-independent shape coordinates (%%, ^2) also forms 

an equilateral triangle. It is, in fact, the one shown in Figure 4. The side of 

this triangle has a length of V2 and its height is \/3^ = Z/-^. 
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From Eq. (19) one obtains for the S; the following expression in terms of the 

independent scale-shape coordinates (s, ^g): 

51 = s(-^/V2 - yVe + 1/3) 

52 = s(^/V2 - VVe + 1/3) (20) 

Sg = s( 2yV6 + 1/3), 

from which follows, by virtue of Eq. (2), 

r,3 = s(-:/V2 + yVë + 2/3) 

r23 = s(4/V2 + y\/6 + 2/3) (21) 

ri2 = s( - 2^# + 2/3). 
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4. RELATION BETWEEN COORDINATE POINTS 

AND MOLECULAR SHAPES 

4.1 General Relationships 

The visualization of molecules represented by arbitrary points in the 

triangle of the parameters x^, Xg is facilitated by the following theorem [which 

is readily proved in the three dimensional coordinate space of (s^, s^) 

depicted in Figure 3]: 

The perpendicular distance Dj between an arbitrary point in the parameter 

triangle and its side opposite to the comer j, is related to the coordinate Sj 

by 

B. = (22) 

From it follows the corollary 

D^+Dg+Dg = sv^3y2 = Height =const, 

in agreement with a geometrical theorem about equilateral triangles. Figure 

5 depicts the distances D^ as well as the distances D^' to the circumscribed 

equilateral triangle. By virtue of Eq. (22), the distances D^' are given by 

Dfc' = (Height of original triangle) - D^ = {ss^\fz/2 

Dk = (Si+Sj);/^^ = r^V^- (24) 

Figure 5 and Eq. (24) establish contact with the "symmetry coordinates" of 
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Murrel et. ai. [4]. It is easily seen that the limitation of the representative 

points to the original, shaded triangle in Figure 5 is equivalent to the 

triangle conditions on the distances r^. 

Let ôj=D/s denote the distance corresponding to Dj in the triangle of the 

scale-independent shape coordinates ^g). Then they satisfy the 

corresponding identities 

Ôj = fjVâ^, (25) 

61+82+63 = \lm = Height. (26) 

For the distances 6;' to the circumscribed triangle, corresponding to the 

distances D/ one obtains 

5/ = (1-fi) = (rjk/r)#. (27) 

Of interest are also the lines along which any one of the angles of the 

molecule is constant. If one angle is fixed, say ({)g, then (j)2 is given by (])jl 

because the sum of all three is n. A parametric representation of the curves 

{^1(4)1), ^2(4)1)} for constant (j)3 is then obtained by substituting the expression of 

Eqs. (9) or (11), with (|)3=const. and (j)2=7C-<j)3-(i)i, in the equations 

(28, 

which follow from Eq. (19). Figure 6 displays the curvilinear grid of the 

curves 

<|)j = 15°, 30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°, 150°, 180° 
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for j=l,2,3. The plot shows that all acute molecules lie inside the shaded 

area enclosed by the lines yi=90°, (1)2=90°, 03=90° which become tangent at the 

comers where two nuclei coincide. The three unshaded areas correspond to 

the three types of obtuse molecules. 

4.2 Illustrative Examples 

Since the first octant diagonal of the (sj, gg, Sg) space penetrates the shape 

coordinate triangle at the origin ^1=^2=0» this point corresponds to the 

equilateral molecule with sides s/3. From what has been said earlier, it is 

also apparent that the isosceles molecules correspond to points on the lines 

from the three comers through the origin to the mid-points of the opposite 

sides. E.g., the ^2-axis contains the isosceles molecules with the nucleus Ng 

at the apex. From the discussion of the three-dimensional parameter space, 

it is also seen that the three sides of the shape- coordinate triangle 

correspond to linear molecules, the points on the side connecting the corners i 

and j representing the linear molecules with the nucleus lying between 

the nuclei N, and Nj. 

Some illustrative examples of oblique triangles are displayed in Figure 7. 

Of importance is the case of linear molecules. If nucleus Ng lies between 

nuclei and Ng, then one has 
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4)1 = 0, 4)2 = 0, (j)3 = 71, = r^g+rgg, 

(29) 

S3 =0, Si = ri3, Sg = r23, s = S^+Sg, 

and the shape factors become 

fi = s/csi+sg) = rig/Crig+rgg), 

4 = s/CSi+Sg) = r23/(ri3+r23), (30) 

= 0. 

By virtue of Eqs. (30) and (25), we have 83=0 so that the parameter point lies 

indeed on the (1-2) side of the shape coordinate triangle. Such a point is 

shown in Figure 8. Since the comer angle is 60°, one obtains for the 

segments a^, Cg on the triangle side [note Eq.(25)] 

01=622/^3 =f2v/2=v^r23/(ri3+r23), Og =6 i2/Y^ =fi\/2 =\/2 r^g/(r^g +r23) 

which add indeed up to the side length V2. The coordinates of this point are 

therefore found to be 

= G1-V2/2 = y[2ir^-T^^)/r, ^ = -1/V^. ^^2) 

4.3 Symmetry 

The Cg symmetry, possessed by all triatomic molecules, is intrinsic to the 

entire perimetric parameter space. The latter is invariant with respect to the 

molecular C, group. 

If the nuclei and Ng are identical, then all points on the plane spanned 

by the Xg and X2=s^2 axes correspond to molecules with Cg, symmetry. I.e., 

the plane Xi=0 is "Cg, restricted". Moreover, any two points in the remainder 
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of the coordinate space obtained from each other by reflection through this 

plane describe two molecules which are each other's mirror image with 

respect to any plane perpendicular to the N^-Ng bond. Consequently, any 

molecular function which is invariant with respect to the interchange of 

and N2 will have C, symmetiy in the (x^, Zg, X3) coordinate space, with Xi=0 

defining the Cg plane. 

If all three atoms are identical, then analogous considerations show that 

not only the plane of Xi=0, but also the two planes obtained from it by 

rotation through ±120° around the Xg axis are (i) restricted and (ii) 

symmetry planes for any function which is invariant under the permutation 

of any of the nuclei. In fact, any such function possesses Cg^ symmetry in 

coordinate space. The Xj axis corresponds to molecules with symmetry. 

In the subspace defined by Xi=0 which, when Nj and Ng are identical 

nuclei, corresponds to Cgy symmetry, i.e. isosceles molecules, it is often 

convenient to make use of the coordinates x and y defined in Figure 9. It is 

therefore useful to know the coordinate grid defined by the lines s=constant 

and X2=constant in the (x,y) plane. 

From the definitions of s and Xg [See Eqs. (3), (4), (5),(15)] and from 

Figure 9, one readily derives 

s = s(xj) = + X, 
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Zg = - 2x] ^2/Z. 

The inversion of these equations yields 

X = x{s^^ = s/3 - xJy/Q, 

y = y{s^^ = s[(l + ^xJs)IZ]^. 

From Eqs. (33) to (36), one readily finds the lines of constant s and Xg. 

The lines s=constant are given by the parabolas 

y ^  -  S X  = s ^ ,  (s=const). 

The lines Xg = constant are given by the hyperbola branches 

6(x + X2'j2lzT - 2y^ = (%2=const.) (38a) 

X > maxfOj^KaV'^} (38b) 

The sections of these curves in the first quadrant are displayed in Figure 

10a. The points on the two axes correspond to the limits of Xg for given s. 

The points on the x-axis correspond to the lower limits Xg = -s/VS; the points 

on the y-axis correspond to the upper limits Xg = 2s/V6. This is illustrated in 

Figure 10b which also indicates the values of x and y at these limits. 

The lines corresponding to the shape coordinates = x^/s = constant are 

obtained by dividing Eq. (35) into Eq. (36) which yields the straight lines 

iS{l+^[Qt^)]^x - (l-l\/6^^)y = 0, (%2=const.) (39) 

They are displayed in Eq. (10c). 
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5. EXTENDED SHAPE COORDINATE SPACE 

Certain continuous deformations of the molecule are not accounted for by-

continuous coordinate changes in the discussed coordinate space, namely the 

in-plane inversions of a triatomic molecule through the linear structures. If, 

in the spirit of considering only internal coordinate variations, out-of-plane 

motions are excluded then these inversions change a clockwise ordering of 

the three atoms into a counterclockwise ordering. Such deformations can be 

accounted for by suitably enlarging the coordinate space, as illustrated in 

Figure 11: The consecutive deformations exhibited in Figure llA are 

represented by the sequence of points in the coordinate space of Figure IIB 

where a second coordinate triangle has been attached to the original one 

through reflection with respect to the line connecting comers 2 and 3. 

Further thought shows that this kind of enlargement has to be repeated in 

all directions over the entire x^-x^ plane in order to cover all possible 

molecular in-plane inversions by continuous coordinate curves. The entire x^-

Xg plane is thus divided into coordinate triangles, half of them with clockvdse 

ordering, the other half with counterclockwise ordering of atoms, as shown in 

Figure IIC. They are related by the translational grid of symmetry elements 

also shown on that figure: a set of trigonal rotation axes and three sets of 

reflection axes. Such translational symmetry grids are typical for internal 
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shape coordinates. (Another such translational grid for another set of 

internal coordinates has been discussed in an investigation of another PES 

[7].) 

The enlargement of the coordinate triangle is not a purely academic 

exercise, but also serves a very practical purpose. Since one can only afford 

to calculate energy values at a limited number of coordinate points, it is 

necessary to interpolate these pristine energy values in order to obtain an 

intelligible picture of the energy surface. However, near the borders of the 

original coordinate triangle, successful interpolation would not be possible 

without taking into account the reflected values in the adjacent coordinate 

triangles. We found it therefore useful to generate, by reflection and rotation 

of the original, pristine energy values, the corresponding values in an 

extended shape coordinate region such as displayed in Figure 12A, which 

contains the section of the infinite grid that surrounds the original coordinate 

triangle (Figure 12B illustrates molecular deformations corresponding to 

twelve points A to N on a coordinate path circling corner No. 3 on Figure 

12A). Interpolation was then performed in the entire space shown in Figure 

12A. This procedure gave good energy contours in the original triangle near 

its borders. Figure 13 displays an interpolation of the groundstate of ozone 

[1] in the enlarged parameter space. The interpolation near the outside 

borders is clearly inferior to that near the inside borders. Ozone has, of 
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course, an additional Cg, symmetry within each triangle, as discussed in 

Section 4.3. The white areas near the triangle comers are the areas where 

two atoms come so close that the. energy becomes extremely high and is not 

calculated. This would not be the case, of course, if the purely electronic PES 

would be plotted (i.e. without nuclear repulsions). It is apparent that, for the 

purpose of interpolating the PES in the original central triangle, one really 

requires only energy values within the dashed line of Figure 13. 

The discussed coordinate space extension may also be useful for dynamic 

calculations. In this context, it may be noted that, for very small values of s, 

all three atoms come very close to each other, the PES tends to infinity and 

becomes highly repulsive. Hence, these regions of coordinate space are in 

fact inaccessible and there is no need to deal with very small and negative 

values of the coordinate Xg. 
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Inscribed Circle *3/2/ $,/2 

Geometric meaning of the perimetric coordinates s 
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Figure 2. Basis 
vectors ArpenmetncscaJe-shape 

coordinates 
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I = (OOl)s 

M = (101)s/2 
•^M = (011)s/2 

/ 

C = (lll)s/3 

1^= (OlO)s 

I,= aOO)s Mg-(110)s/2 

Figure 3. Perspective view of two-dimensional parameter plane for shape 

coordinates 
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Figure 4. Coordinates on parameter plane of the shape coordinates 
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/ 
\ 
\ / Circumscribed 
\/ triangle 

D. = s.% D.' = x.^W2 

Definition of Dj, Dg, Dg and D^', Dg', Dg' for Eqs. (22) and (24) 
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3 

Constant angle grid on the shape coordinate triangle. 
The curves (|). = constant are convex towards comer j. 
Increments: A(|)j=15°, Bold: 60°, Dashed: 120°. 

Shaded area: (|)^,(|)2,(|)g all < 90° 

Figure 6. Curves of constant angle in scale-independent shape coordinate 

space 
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Isosceles molecules with N3 at the apex 

3 3 
1 3 2 1 3 2 

B 

1 D 2 1 E 2 1 F 2 
Molecules with constant 1^2 distance 

3 

1 2 1 2 
Molecules related to each other by permutations of atoms 

Figure 7. Examples of molecular shapes for selected points in the scale-

independent shape coordinate plane 
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Figure 8. Coordinate point of a linear molecule N^NgNg 
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Y 

Oo 

Figure 9. Coordinates x and y for isosceles molecules 
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A 

Xj = const > 0 

Xj = const < 0 

s=const 

y=s=x,'/3^ 

B 
x=s/2=(-xJm 

s - const 

(=-xy^ 

c 

^=2/!i6' 

Figure 10. Lines s=constant, X2=constant, and ^2=constant on the (x,y) 

plane 
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V W X Y Z 
A. In-plane molecule inversions keeping r,2=const. and ^i2^^23'^^i3 ~ 

3 1 

B. Extended shape coordinates for deformations of A. 

C. Complete extended shape coordinate space. 1,2,3: Triangle comers. 
Shaded: Clockwise order. White: Anticlockwise order of atoms. •: Trig­
onal axes. Solid lines: mirror planes. Crosses: Equivalent coordinate points. 

Figure 11. Complete extended shape coordinate space 
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Shape coordinate for interpolation. 
Shaded triangles: clockwise atom order. 
Dotted triangles: anti-clockwise atom order. 
Center triangle: original space (anti-clockwise). 

3 

1 2 
B. Molecular shapes corresponding to points A to N above. 

Figure 12. Shape coordinate space extended for interpolation 
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ABSTRACT 

The topographies of two potential energy surfaces are examined in the 

vicinity of their intersection. A brief account of the basic theory is given and 

the possible surface types are discussed explicitly. Two main patterns are 

found. One of these ("peaked") has the character of a tilted double cone in 

that the lower (upper) surface decreases (increases) in all directions from the 

intersection which is a point where an infinite number, in fact, all orthogonal 

trajectories emanate. The other pattern ("sloped") results when both surfaces 

are monotonically sloped and touch each other along the slope, with most 

orthogonal trajectories bypassing the intersection. When the latter pattern 

prevails, the intersection can lie on a steepest descent line which originates 

at a transition state and hence may qualify as a reaction path model. An 

intermediate pattern, involving a horizontal slope on both surfaces, is also 

possible. The topographical patterns also differ markedly with respect to the 

bunching of the steepest descent lines. In general, the latter tend to veer 

away from the intersection on the lower surface favoring bifurcations but are 

funneled towards the intersection on the upper surface, making the vicinity 

of the intersection a region favoring radiationless transitions. The various 

cases are classified and illustrated through quantitative graphs of contours 

and orthogonal trajectories. 
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1. INTRODUCTION 

Radiationless transitions among potential energy surfaces play essential 

roles in photophysical phenomena and photochemical reactions. They occur 

preferentially when potential energy surfaces (PES's) approach each other 

closely and, in particular, when they cross. Such crossings represent 

therefore an important aspect of potential energy surfaces. Although 

quantitative ah initio information about them is still limited, it has become 

apparent that intersections occur frequently. The results reported in 

previous papers furthermore show that they can lie close to transition states 

[1] as well as on steepest descent curves connecting transition states and 

minima [2], i.e., on curves which are often viewed as models for reaction 

paths. 

Fundamental theorems regarding PES intersections have been known 

since 1927 [3] and have been discussed in further detail in recent years 

[4,5,6]. However, we are not aware of any quantitative presentation of the 

variety of shapes which PES's can assume around intersections nor of any 

discussion of their orthogonal trajectories. Since the difference between two 

PES's near an intersection is an elliptical cone, and since the two surfaces 

together form a double cone when the energy is plotted against the internal 

coordinate plane, it is customary to talk about "conical " intersections. 
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However, this double cone may be arbitrarily tilted against the energy axis so 

that, in general, it is not too helpful for visualizing the energy contours on 

any one surface. 

In the neighborhood of a point where two states cross, the first-order 

approximations to the two PES's depend essentially on three parameters, and 

their values strongly affect the topographical features of the surfaces. In the 

present note, we analyze and exhibit graphically contours as well as 

orthogonal trajectories for the various possible cases in this approximation. 

Since the values of these parameters can be readily determined in any 

specific case, the classification given provides adequate information for 

recognizing the character of a particular crossing. 
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2. THEORETICAL BACKGROUND 

In the present section some basic relationships are summarized, which 

are spread over the literature, and certain specific aspects are discussed in 

greater detail. 

2.1 The Crossing Conditions 

The intersection of two potential energy surfaces, E^Cq) and EgCq), implies 

that, for certain values of the internal coordinates q = (q^, % ... qm) of the 

molecule, the two energies are equal. The locus of all points in the internal 

coordinate space where the identity Ei(q)=E2(q) holds, is a curvilinear 

coordinate subspace which we denote as the intersection coordinate subspace 

(ICS). If El and Eg were two arbitrary surfaces, then one would expect the 

condition E^ = Eg to determine an ICS of dimension (M - 1). However, and 

Eg are not independent of each other, rather they are two solutions of the 

same eigenvalue problem of one Hamiltonian H. This circumstance leads to 

an additional condition, as was first recognized by von Neuman, Wigner, and 

Teller [3]. 

Without loss of generality, the two intersecting adiabatic states, % and 

Vz, can be expressed as linear combinations of two arbitrary, e.g., diabatic 

orthogonal states, (j)i and 02, in the fonction space that is complementary to 
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the space spanned by all other eigenstates \|/jj (n > 3) of the relevant electronic 

Hamiltonian operator H whose energies Eg, E4 ... are assumed to be non-

degenerate with El and Eg: 

— 01 Cii + 02 (^1) % — 01 C12 + 02 ®22 • (2.1) 

The expansion coefScients and the corresponding energies E^, Eg are 

determined by the eigenvalue problem of the 2x2 matrix = <0i |iï| (î)j>. We 

consider here the practically important case that all are real. The 

variation of the Ej and c^ with the nuclear motions is a result of the 

dependence of the Hy upon the M internal coordinates q = (q^, q^,... q^j) 

which describe the geometry of the nuclear framework: Hjj = H^Cq). The 

phase-consistent discussion of the solutions is made transparent by writing 

the matrix H = {H^} in the form 

H = H I  +  R U ,  ( 2 . 2 )  

with I denoting the identity matrix and U denoting the matrix 

cosa sina 

l^sincc -cosaj 
(2.3) U = 

where the quantities H, R and a are defined by 

H = (HI,+H22)/2, AH = (Hii-H22)/2, R = (2.4) 

cosa = AH/R, sina = Hig/R. (2.5) 

From Eqs. (2.2) and (2.3), the expectation value of an arbitrary linear 

combination \j/ = ((jj^cosy + 02 siny) is found 
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to be 

lip» = H + R cos(2y- a), (2.6) 

The manifest extrema of this function with respect to y yield the two 

eigenstates 

= <J)i cosa/2 + (j)2 sina/2 (2.7) 

with 

El = H + R , (2.8) 

and 

% = (()i cos(a+Ji)/2 + (1)2 sin(a+jr)/2 = - (j)i sina/2 + (j)2 cosa/2 (2.9) 

with 

E 2 = H - R .  ( 2 . 1 0 )  

According to Eqs. (2.8) and (2.10), an intersection occurs whenever R 

vanishes which, according to Eq. (2.4), requires that the two quantities AH 

and Hi2 both vanish. The intersection coordinate subspace (ICS) is therefore 

defined by the two crossing conditions 

AH(q) = 0, i.e. Hu(q) = H22(q) , (2.11) 

Hi2(q) = 0 . (2.12) 

2.2 The Intersection Space (ICS) 

Dimension and Symmetry 

It is possible that the equation system (2.11), (2.12) has no real solutions, 
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in which case the two states do not cross. However, if a real solution exists 

for one particular point q°, then it is to be expected (i.e., the opposite is 

unlikely) that this point is part of a contiguous (M-2) dimensional region in 

which this remains true. This inference is based on the premise that the 

matrix elements are piecewise continuous functions in all coordinates. 

Thus, if there exists an ICS, then it is expected to be of dimension (M-2). 

This conclusion has to be modified in those cases where, for some reason, 

the off-diagonal element vanishes identically for all values of the nuclear 

coordinates q^, qg, ... q^. In such a case, and (^2 clearly are the 

eigenfimctions i/i, % for all values of q and Eq. (2.11) is the only remaining 

condition for a crossing. Thus, the ICS, if it exists, is expected to be of 

dimension (M-1). The most common reason for this to happen is that the two 

states Yi, % belong to different irreducible representations of the symmetry 

group of the molecule. In such a case, the space spanned by <î)i and (j)2 spans 

a reducible representation and the reduction, by purely group theoretical 

means, yields two states belonging to different irreps between which the off-

diagonal element vanishes identically for all (q^, q2,...,qM). Hence, they 

are in fact the eigenstates %, ij/g and Eq. (2.11) remains as only condition for 

crossing so that the ICS is of dimension (M-1). 

Often a situation is found which combines aspects of the two cases just 

discussed. It occurs in molecules where a certain restricted class of nuclear 



www.manaraa.com

53 

arrangements belong to a higher symmetry group than other geometries. For 

example, a molecule XYg belongs to the symmetry group Cg when all 

internuclear distances are different, but it belongs to the higher group 

when the two (XY) bond lengths are the same. In such molecules, there 

usually exist states which belong to the same irreducible representation in 

the lower symmetry (e.g., A' in Cg) but to different irreps of the higher 

symmetry (e.g., and in Cg,) for the restricted class of geometries. There 

are many examples for two such states to cross for a geometry that has the 

higher symmetry. In the space of higher symmetry, the upper state belongs 

to one irrep (e.g., A^) on one side of the intersection and to the other irrep 

(e.g., Bj) on the other side of the intersection. The reverse is true for the 

lower state. If the restricted coordinate space of higher symmetry is of 

dimension R, then the M coordinates can be chosen in such a manner that all 

variations in (q^ qav^qR) maintain the higher symmetry and (qg+i, qR+g,—,%) 

break that symmetry unless they all vanish. It can then be concluded that 

the intersection space of the two states is of dimension (M-2) in the total 

space and of dimension (R-1) in the restricted space of higher symmetry. The 

intersection space is therefore of dimension (R-1) in the coordinates (qi,...,qR), 

and has [(M-2)-(R-l)] = (M-R-1) additional degrees of freedom when the 

coordinates (qE+i,...,qM) are allowed to vary as well. If it so happens that R = 

M - 1, then it is thus possible that the intersection space lies entirely in the 
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restricted coordinate space of higher symmetry. 

The discussed case of two states belonging to the same irrep in the larger 

space of low symmetry and to different irreps in the restricted space of high 

symmetry is not the only possibility for the intersection of two PES's in a 

space of higher symmetry. It can also happen that two PES's which intersect 

in the space of higher symmetry, belong to the same irrep in the space of 

higher symmetry as well as in the space of lower symmetry. An example of 

such a crossings has recently been found through ab initio calculations for 

the lowest two states of ozone [1]. In terms of the coordinates chosen at 

the end of the last paragraph, the ICS is, in such cases, of dimension (M-2) in 

the total space, of dimension (R-2) in the coordinates (qi,q2,.",qR) and has (M-

2)-(R-2) = (M-R) additional degrees of freedom when the coordinates (Qr+i, 

qg+2,...,q2^) are added to the coordinates (q^qg,.That is, the intersection 

space corresponds to a subspace of dimension (R-2) in the restricted 

coordinate space of qi,...,qR, complemented by the full variation in the 

coordinates qR+i,—,qM-

Still another situation is found in the cases of the Jahn-Teller and the 

Renner-Teller effects. Here two states, which belong to different irreps in the 

larger space of low symmetry, become two partner functions spanning one 

two-dimensional irrep in a restricted space where a higher, non-Abelian 

symmetry group applies. For the Renner-Teller effect, this group is for 



www.manaraa.com

55 

the Jahn-Teller effect, it is another point group. 

Diatomic and triatomic molecules are special in that, for them, the lowest 

possible symmetry is not as it is for all other molecules. In triatomic 

molecules, it is Cg so that, for any molecular geometry, there exist two kinds 

of states, those belonging to the irrep A' and those belonging to A" Since 

there are three internal coordinates, the intersection "seam" between two 

surfaces is a line (dimension 3-2) if they belong to the same irrep and a two-

dimensional sheet (dimension 3-1) if they belong to different irreps. 

Furthermore, within the full three-dimensional coordinate space, there 

always exists a two-dimensional subspace, corresponding to the linear 

conformations of the molecule, where it belongs to C„h symmetry. Since most 

of its irreps are two-dimensional, there exists then the possibiUty for a 

Renner-Teller effect. When two atoms are of the same element, then there 

also exists a two-dimensional coordinate subspace where the molecule has 

symmetry. One then has three possible cases: (i) both states belong to the 

same irrep in Cg and Cg^: (in this case, the ICS seam is a line in the full Cg 

space and penetrates the Cjv coordinate plane in a point); (ii) both states 

belong to different irreps in C, and Cgy: (in this case the ICS is a two-

dimensional sheet in Cg and penetrates the Cg^ coordinate plane in a line); 

(iii) the two states belong to the same irrep in Cg, but to different irreps in 

Cg,: in this case the ICS seam is a line in C, and in Cg^,; it is therefore 
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possible that it is a line which lies entirely in the Cg^-preserving coordinate 

space without extending in the full C, space. If all three atoms are of the 

same element, then there exists a one-dimensional coordinate subspace of 

equilateral triangles with Dgj, symmetry. Since this group has two-

dimensional irreps, one has here the possibility of a Jahn-Teller effect for two 

states belonging to different symmetry in Cgv 

Diatomic molecules are special in that they have only one internal 

coordinate, i.e., the intemuclear distance, and in that they belong to the 

symmetry groups or The states may therefore belong to many 

different irreps. Two states belonging to different irreps intersect in a point 

(dimension 1-1=0). However, for two states of the same symmetry, the two 

conditions (2.11) and (2.12) cannot, in general, be satisfied by adjusting the 

one available variable R and hence they cannot be expected to intersect. This 

"non-crossing rule" is, however, strictly limited to diatomic molecules. 

Attempts to establish a wider validity for it have failed [5]. 

Intersection Space and Reaction Paths 

At a transition state, orthogonal trajectories of PES contours emanate in 

the directions of the M normal modes. One of them, the intrinsic reaction 

path, is a steepest descent line. The (M-1) others are steepest ascent lines 

and define the barrier ridge. If the transition state hes in an R dimensional 
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coordinate subspace of higher symmetry, then its normal modes either lie 

entirely in the space of higher symmetry or are perpendicular to it. It can 

then be shown that the orthogonal trajectories starting out in the space of 

higher symmetiy maintain that symmetry until they come to a point where 

the gradient vanishes or is discontinuous. For example, if the transition 

state of a triatomic molecule lies in the preserving subspace, then two of 

the orthogonal trajectories emanating from the transition state stay in the 

Cgv subspace and the third one starts out along the Cgy symmetry breaking 

coordinate. 

If now, in the subspace of higher symmetry, this PES also has an 

intersection with another PES belonging to a different irreducible 

representation, then the intersection space is of dimension (R-1) within the 

higher symmetry space. It is therefore not unlikely that any one of the R 

one-dimensional orthogonal trajectories originating at the transition state in 

the high-symmetry subspace (be it the reaction path or one of the ridge lines) 

crosses the ICS. Indeed, we have shown elsewhere [2] that the reaction path 

of the cyclopropylidene ring opening goes through an intersection after 

having passed the transition state under the described conditions. 

If the PES intersects a surface belonging to the same irreducible 

representation then the ICS is of dimension (R-2) within the high-symmetry 

subspace and one would think that it is unlikely to be crossed by a specific 
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one-dimensional orthogonal trajectory in that subspace. For example, in the 

Cg, preserving subspace of a triatomic molecule, such an intersection is a 

point in a two-dimensional plane and it would seem improbable that an 

orthogonal trajectory in that plane would go through exactly that point. 

Nonetheless, we have found [1] that in the ozone molecule, such an 

intersection point does in fact lie on the orthogonal trajectory emanating from 

a transition state along a barrier ridge. In addition, this intersection point 

lies within 0.04Â and 1 kcal/mol of a transition state on one PES and a 

minimum on the other PES. These "coincidences" are clearly consequences of 

an intrinsic relation between the lowest two eigenvalues of this particular 

Hamiltonian, so that purely probabilistic reasoning is inappropriate. 

Intersection Adapted Coordinates 

The discussion of an intersection is simplified by choosing, in a certain 

domain around the intersection, curvilinear coordinates which are 

particularly suited to the problem. Such intersection adapted coordinates 

Pi,P2,P3,—,Pm can be defined as follows: 

Pi — H 12(9) 

P2 = AH(q) = [Hn(q)-H22(q)]/2, 

Pj = Pj(q), j = 3,4,...,M 

(2.13b) 

(2.13a) 

(2.13c) 

where the Pj for j>3 are chosen orthogonal to pi,p2 in the sense that 



www.manaraa.com

59 

^ 0pj/9qt)0pn/3qt) = 0 (2.14) 
t=i 

for n = 1,2 and j = 3,4,..,,M. In the domain where these definitions are valid, 

the two energy surfaces are given by 

Ei,2=H(p)± {Pi' + pa^}^^ (2.15) 

and the intersection space is then given by the conditions Pi=P2=0. It is 

therefore spanned by the coordinates P3,P4,...,Pm-

Tangent Intersection Space 

It is useful to examine the ICS within a small neighborhood of a point 

q° = (qi°, q2°,...,qM°). In such a domain, the ICS is approximated by the (M-2) 

dimensional linear space which is tangential to the ICS at q°, the tangent 

ICS. It is obtained by expanding the matrix elements (q) to first order in 

terms of the displacements x fi'om the point q°, i.e., 

X = q - q° = (Xj, X2,...,Xm) . (2.16) 

Writing 
m 

H(q) = H° + I Ut X,, H° = H(q°), U, = [3 ' 
t=l 

H/aqJ", (2.17a) 

m 
AH = 0 + I V, Xt, V, = [a(AH)/aqJ°, (2.17b) 

t=i 
m 

= 0 + S Wt X,, W, = [dH^dq,r, (2.17c) 
t=i 
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(2.18) 
t t t 

The tangent ICS is then determined by 

Z VjXj — 2 WjXt - 0, (2.19) 

i.e., it is the plane orthogonal to the gradients of H12 and AH. 

2.3 The Branching Space 

Energies 

While the degeneracy is preserved in the (M-2) dimensional ICS 

spanned by the coordinates P3,.-jPm> it is lifted in the two-dimensional 

branching space spanned by the coordinates Pi,P2. On this sheet, defined by 

P3=P4=—=Pm=0> the energies are given by 

Near a point Qq on the ICS, this branching sheet is approximated by the 

tangent branching plane spanned by the gradients of and AH at qg, i.e., 

by the coordinates 

On any given, fixed straight line through the intersection in the tangent 

branching space, say yi=Bit, ygzBgt, one finds 

E1.2 =H(p„P2) ± (pi'+pg')^ (2.20) 

yi = I = Pi, 72 = I = P2- (2.21) 

In this tangent branchingspace the energies become 

E1.2 = Aiyi + Agyg ± (2.22) 
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Ej = (AiBi+A2B2)t + (Bj^+Bg^) 111 for the upper state 

Eg = (AiBi+A2B2)t - (Bi^+Bg^) 111 for the lower state 

so that one has the identities 

OEiW. = OEg/Bt)^, 

OEg/at)" = OEg/at)^. (2.23b) 

(2.23a) 

They are illustrated by Figure 1 which also explains the somewhat confusing 

terms "intersection" and "crossing". They are based on the picture that on 

any line through the intersection, (Ei)+ and (Eg), form a continuously varying 

state with a continuous slope [see also the remarks after Eq.(2.25) regarding 

the continuity of the wave functions] as do (Ej). and (Eg)^. In fact, (Ei)+ and 

(El), are of course connected by going around the crossing in an additional 

dimension as are (Eg)^ and (Eg).. Figure 1 also shows that the two surfaces 

can connect in three possible ways, namely, according to a "peaked" pattern, 

a "sloped" pattern, and an intermediate, "semi-level" pattern, a distinction 

which will turn out to be useful for the classification of intersections to be 

developed in Sec. 2. The stated conclusions remain valid if the straight line 

also has components with respect to the additional coordinates Pg, P4,...,Pm. 

Wave Functions 

The quantities R and a which were introduced in Eqs. (2.4) and (2.5) have 

a simple meaning in the branching space. From the definitions (2.13), it 
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follows that 

R = (Pi^+Pz^)^, cosa = Pi/R, sina = pg/R (2.24) 

and it is apparent that (R,a) are the polar coordinates corresponding to the 

intersection- adapted coordinates (pj, p<^ if the latter are plotted as a 

Cartesian axis system. On the other hand, the states i/i, ij/g can be considered 

as unit vectors in the function space spanned by the orthogonal functions 

^2- According to Eqs. (2.7) and (2.9), the polar angles in this function space 

are (a/2) for % and (a+iz) 12 for Consequently, if one moves along a 

continuous sequence of coordinates (p^, Pg) describing a loop around the 

intersection point q° in the coordinate branching space, then the two 

corresponding eigenstates rotate continuously around the origin in the ((j>i, <j)2) 

function space, but "at half the speed." This is illustrated in Figure 2. Since 

(j)i and (j)2 can be assumed to be univalued everywhere, the following two 

inferences can therefore be drawn. 

First, if one travels halfway around q°, corresponding to an increase in a 

by Tz, then one would have 

\|/i(a+7c) = %(«), \}/2(a+7c) = - i|/i(a) (2.25) 

if the functions (j)i and ({ig were the same. This becomes in fact the case at the 

intersection. Thus, Eq.(2.25) holds when is the limiting wave function 

immediately "before" and % is the limiting wave function immediately "after" 

passing through q° on a straight line ("before" corresponding to a and "after" 
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corresponding to a+7t). At the intersection point, the wave function of the 

lower PES connects thus with that of the higher PES, and vice versa, except 

for possible changes in sign. Consequently, in passing through the 

intersection along any fixed direction, the wave functions of both, the lower 

as well as the higher PES, change their character abruptly because, in fact, 

they exchange characters at q. {At the intersection, any linear combination of 

Yi and % is of course an eigenfunction.) This behavior of the wave function 

is related to the behavior of the gradients of E^ and Eg expressed by Eq.(2.23) 

and depicted in Figure 1 and is the limiting case of the behavior found for 

wave functions near avoided crossings. 

The sudden change in the character of the wave function of the lower PES 

and that of the higher PES is very obvious for the intersection of two surfaces 

of different symmetries because, if the PES belonging to irrep A lies above 

that for irrep B "before" the intersection, then the reverse is true "after" the 

intersection in such a case. Consequently, both the upper as well as the 

lower PES change from one irrep to the other when one moves through the 

intersection. 

There exists some inconsistency in the use of the concept of a "state" in 

such situations. In general and in the case of two PES's of the same 

symmetry, one state is usually defined as comprising all wave functions with 

the lower energy, the other state is defined as comprising all wave functions 
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with the higher energy. However, when the two states belong to different 

irreducible representations of a group, then it is customary to consider all 

energies corresponding to wave functions belonging to the same irreducible 

representation as one state and one PES. The second convention contradicts 

the first one. The contradiction leads to a conceptual conflict in cases, such 

as discussed above, when the two surfaces belong to the same irrep in the 

lower symmetry group, which is valid in the entire coordinate space, but to 

different irreps in a restricted coordinate subspace where a higher symmetry 

holds. La such cases, it seems appropriate to stick with the first convention 

and to admit that, in the high symmetry subspace, each state belongs to one 

irrep in one domain and to another irrep in another domain. 

The second inference of Figure 2 is the theorem of Herzberg and Longuet-

Higgins [4] which states; if one follows the continuous deformations of the 

wave functions Yi, ¥2 along a closed path looping around the intersection 

point q°, then both wave functions return to their original form multiplied by 

(-1), i.e., 

x|/i(a+2;r) = - ViCa), \sf.J,a+2ii) = - vj/gCa). (2.26) 

This theorem permits the determination of the existence of an intersection in 

a certain domain without having to find its location or when the equality of 

the energies of the two states has only been approximately established [1]. 

It is evident that the two discussed inferences remain valid (i) if one 
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follows the straight line through qg or the continuous loop around q^, 

respectively, in terms of any other coordinates which are related to Pi,P2 by a 

one-to-one topological mapping and (ii) if one extends the path followed by 

allowing the variables P3,P4,."»Pm to become different from zero and letting 

them vaiy at the same time, as long as the variables p^, pg remain 

sufficiently well defined along the chosen path. It is also apparent that the 

validity of the phase theorem is limited to the domain in which the functions 

HigCg) and AH(gr) are sufficiently regular and where a one-to-one 

correspondence exists between the intersection adapted coordinates p and the 

original coordinates q. 
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3. TOPOGRAPHY OF THE LOWER SURFACE 

IN THE TANGENT BRANCHING SPACE 

If the branching space is of dimension 1, then the three patterns of Figure 

1 cover all possibilities and there is not much to discuss. In the present 

section we consider PES's in a two-dimensional branching space, which is the 

general case. 

3.1 Expression for a PES in Terms of Mass-Weighted Cartesian Coordinates 

While the difference between the two potential energy surfaces in the 

tangent branching space. 

El - Es = 2(yi" -H . (3.1) 

is a cone, the individual PES's of Eq. (2.22) are superpositions of a plane and 

a cone. In the present section we shall examine the basic topography of such 

functions. We shall also examine their steepest descent lines which furnish 

additional information and are often considered as model curves for reaction 

paths. Since orthogonal trajectory patterns depend markedly upon 

coordinate scaling, it is relevant that reaction paths are generally believed to 

be most appropriately modeled by steepest descent lines in the space of mass-

weighted Cartesian coordinates or coordinates obtained from them by 

orthogonal transformations. The coordinates which led to the simple Eq. 
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(2.22) were, however, obtained by a very specific scaling which, in general, is 

not orthonormal. In terms of displacements x^, X2,...,Xm of mass-weighted 

Cartesian coordinates, the expressions for the two PES's have therefore the 

more general form 

- E° = Bj Xi + Bg Xg ± (Ci Xi^ + €3X2^ + 2Ci2 x^ Xg)^, (3.2) 

where the quadratic under the radical sign is positive definite. It can be 

brought into diagonal form by an orthogonal transformation and, in terms of 

these new coordinates, one has 

Ei_2 - E° = bi X + bg y ± (c^^ x  ̂+ y^)^ . (3.3) 

Without loss of generality, we can divide through by c^, which can be 

assumed positive, and obtain 

Eg - E° = Ci /(x,y) for the lower PES (3.4a) 

El - E° = -Ci /(-x,-y) for the upper PES , (3.4b) 

where 

/(x,y) = -ax - by - (x^ + cV)"^ • (3.5) 

Since both the upper and the lower PES's can be obtained from the function 

/(x,y), we shall discuss this function, i.e. the lower surface, in this section in 

detail. It is apparent that the surfaces obtained for the parameters a and (-a) 

are each others' mirror images with respect to the y-axis and that the 

surfaces obtained for b and (-b) are each others mirror images with respect to 

the X axis. We therefore limit the parameters a and b to positive values. 
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This has the effect that in those cases where f is monotonie, it decreases with 

increasing values of x and y. 

The energy of the lower surface, plotted as a fxmction of x and y, is an 

elliptical cone tipped over. The contour curves of constant energy 

[flx,y)=constant] are intersections of planes with this cone, i.e., they are conic 

sections. Depending on the ellipticity and how the cone is tipped, they may 

be ellipses, parabolas, hyperbolas, or limiting cases like circles or straight 

lines. 

3.2 Case of a Circular Difference Cone 

General Considerations 

We begin by examining the special case of a circular difference cone 

because it is simple and yet exhibits important characteristic features. 

According to Eq,(3.5), a circular difference cone results when the parameter c 

is unity. Since the radicand (x^+y^) is invariant under orthogonal 

transformations, it is apparent that the expression for f(x,y) can be brought 

into the form 

f(x,y) = -ax -(x^+/)^ (3.6) 

while still maintaining orthogonally transformed mass-weighted Cartesian 

coordinates. Thus, we can assume b=0 without loss of generality. [When 

arbitrary scaling is admitted, as in Eq.(2.22), all surfaces reduce to this 
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form.] 

Contour plots of the function (3.6) are exhibited in Figure 3. Nine panels 

are shown corresponding to nine values of the parameter a. In all panels, 

both coordinates, x and y, go from -2.5 to +2.5. The origin, indicated by a 

bold-faced dot at the center, is the intersection point. Solid lines depict the 

contours f=0.3n (n=integer). Bold-faced solid lines are contours where f=0. 

The functions f(x,y) are positive in the shaded areas and negative in the 

unshaded areas. Dashed lines depict orthogonal trajectories. Bold-faced 

dashed lines indicate orthogonal trajectories that are straight lines. They 

separate orthogonal trajectories of opposite curvatures from each other. 

Sloped patterns 

It is apparent from Eq.(3.6) that there are always regions where f is 

negative. If there also exist areas where f is positive, then there must be 

contours for which f(x,y)=0. According to Eq.(3.6), they are given by 

ax = -(x^+3^)^. (3.7a) 

When a>l, then Eq.(3.7a) yields the two straight lines 

y = ±(a^-l)^. (3.7b) 

Since a is assumed to be positive, Eq.(3.7a) also shows, however, that x must 

be negative. Equation (3.7b) defines therefore two straight half-lines which 

meet at the origin, as indeed shown in Figure 3 on the four panels for a>l. 
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The two bold-faced half-lines corresponding to f=0 form one contour 

separating the shaded domain at the left where f>0 from the domain at the 

right where f<0. 

These panels are labelled by the symbol S indicating that all of these 

surfaces are "sloped" in the sense that they descend monotonically from left 

to right, i.e., with increasing values of x. The slope of this descent is much 

steeper in the region of negative f than in the region of positive f, i.e., the 

surfaces decrease gently coming from the left and rapidly to the right of f=0. 

From Eq.(3.6), one obtains for the orthogonal trajectories the differential 

equation 

dy/dx = y/[x+a(x^+y^)^] (3.8) 

whose numerical integration yields the dashed steepest descent lines in 

Figure 3. All of them originate in the region to the left where if is positive 

and, for large negative x values, start out parallel to the x axis. As x 

approaches zero, the orthogonal trajectories turn away from the x axis so as 

to cut through the bold-faced straight line contours / = 0 at right angles. The 

closer to the negative x axis the steepest descent lines start out, the more 

abruptly they turn away from the x axis at the appropriate points. 

The X axis itself is a steepest descent line which rides downhill on a ridge 

from left to right straight through the intersection point, where its slope 

abruptly increases in absolute value. It is readily confirmed that y=0 is in 
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fact the only straight line which satisfies the differential equation (3.8). 

Since the slope changes discontinuously at the origin, we consider it as two 

half-lines, one ending and the other beginning at the origin. The existence of 

two straight-line orthogonal trajectories is indicated by the number 2 in the 

symbol S2 labeling these panels. By virtue of Eq.(3.4), it is apparent that the 

steepest descent lines of and Eg going through the intersection form the 

sloped pattern of Figure 1. 

We have discussed the pattern for c=l, a>l in some detail since, in a 

previous investigation [1] we found that a reaction path descending from a 

transition state was modeled by a steepest descent line passing through an 

intersection in exactly the same manner as the x axis does in the "S2" panels 

of Figure 3. Immediately after the transition state this steepest descent line 

followed the floor of a valley. Then, at a valley-ridge inflection point [7], it 

turned into the crest of a ridge which then passed through the intersection as 

illustrated in Figure 3. Upon approaching the intersection point on such a 

reaction path, the system will become subject to random dynamic instabilities 

when it arrives on the ridge and will fall off it. The orthogonal trajectory 

pattern exhibited in Figure 3 implies that the system, once off the ridge will 

be subject to forces which will push it more and more away from the ridge 

and more and more strongly so. It is thus apparent that in the region 

around an intersection point with the discussed topography, the PES has a 
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strong bifurcating effect on the reaction path, and particularly so when the 

parameter a is close to 1. 

Peaked Patterns 

When a<l, then Eq.(3.7) has only one solution, namely x=y=0. Thus, the 

function f(x,y) vanishes only at the origin and descends in all directions 

towards negative values. This peaked pattern is therefore labelled by the 

symbol P. The positive as well as the negative x axis both are again the only 

straight-line orthogonal trajectories and the panels are therefore labelled as 

P2, All other steepest descent lines start out at the origin in the direction of 

the negative x axis and, then, turn around towards increasing x values. The 

contours are ellipses. The steepest descent lines on and Eg form the 

peaked pattern of Figure 1. 

When a=0, these contours become circles and all orthogonal trajectories 

become straight lines. The function f(x,y) is a circular cone and the panel is 

therefore labelled as PC in Figure 3. 

Intermediate Patterns 

For a>l, the inclination of the bold-faced contours f=0 with respect to the 

X axis becomes progressively smaller as the parameter a approaches 1. 

Concomitantly, the region of positive /-values becomes progressively narrower 
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and the steepest descent lines start out as a progressively narrower bundle to 

the left, which upon approaching the origin, suddenly splits by veering to one 

side on the other. For a=l, we have the limiting case between the patterns P 

and S, and we denote this intermediate pattern as R. In this case, the two 

bold-faced straight-line contours f=0 of the S pattern have collapsed into the 

negative x axis and the region with f>0 has been squeezed out. The function 

f descends downhill from all points on the negative x axis, which is now the 

contour f=0. Hence, only the positive x axis is a straight-line orthogonal 

trajectory and the panel symbol is therefore Rl. All steepest descent lines, 

except the +x axis, start out perpendicular to the -x axis and are mirror 

images (with respect to the y-axis) of certain contour lines of f(x,y). The 

steepest descent lines on and Eg form the intermediate pattern of Figure 

1. 

3.3 The case of an Elliptic Difference Cone with Principal Axes Lined Up 

Along the Linear Term 

General Considerations 

For c different from unity, the difference cone (Ei-Eg) is elliptical and, in 

general, its principal axes are unrelated to the vector (a,b) which determines 

the linear term. However, when b=0, then 

f(x,y) = -ax -(x^+cV)^ (3.9) 
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and the vector (a,b) = (a,0) is lined up with one of the axes of the difference 

cone. It is unnecessary to consider the case (a=0, b#0) as well, if we consider 

c>l and c<l for the case (a^^O, b=0). This is because rotation by 90° will map 

each pattern (a=0, b^O, ol) into a pattern (a#0, b=0, c<l) and each pattern 

(a=0, b;K), c<l) into a pattern (a#0, b=0, ol). 

As in the case of a circular difference cone, we have regions where f>0 

only if there exist contours f=0. From Eq.(3.9) follows that they are given by 

y = ±[(a^-l)^/c]x, x<0 (3.10) 

provided that a>l, as before. A region f>0 exists when a>l and it hes 

between the two straight half-lines defined by Eq.(3.10), as illustrated by the 

bold-faced solid lines in Figure 4. For a=l, the negative x axis with f=0 is the 

crest of the surface. For a<l, the origin is the only point where f=0. 

Accordingly, the three cases a>l, a=l, a<l are again characterized by the 

symbols P, R, and S introduced in the last section. 

The orthogonal trajectories are now given by the differential equation 

dy/dx = cV/[x+a(xVcV)^]- (3.11) 

As before, the dashed lines in Figure 4 represent some of them, obtained by 

numerical integration, and the bold-faced dashed lines are straight-line 

orthogonal trajectories. The equations for the latter are obtained by 

substituting y=kx into Eq.(3.11): 

k = c^kx/[x+a(x^+c^^)"^] 
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k[l+sign(x)a(l+c^^)^ - = 0 

which factors into the two equations 

k = 0 (3.12) 

(1+c^k^)^ = C(c^-l)/a]sign(x). (3.13) 

Thus, we have again the orthogonal trajectories y=0 for x>0 and for x<0 

(except in the case a=l, where x>0 is the only one). However, in addition we 

find now from Eq.(3.13) the two straight-line orthogonal trajectories given by 

provided that I c^-11 >a. 

The x-axis is the Shorter Principal Axis of the Difference Cone (c<l). 

The case c<l is illustrated in Figure 4 for c=0.5. As discussed after 

Eq.(3.10), regions with f>0 exist for a>l (panels S), but not for a<l (panels P). 

Panel R is the limiting case. 

All panels S and P exhibit the two straight-line orthogonal trajectories 

(y=0, x>0) and (y=0, x<0). However, it is readily verified that for the panel 

R, corresponding to a=l, only (y=0, x>0) is an orthogonal trajectory. 

In addition, there exist, however, the additional straight-line orthogonal 

trajectories corresponding to Eq.(3.14), as long as a< I c^-11 =l-c^=0.75. In 

agreement with Eq.(3.14b), they are half-lines with sign(x)=sign(c^-l)<0. 

k = ±[(c^-l)^-a^]^/ac (3.14a) 

sign(x) = sign(c^-l) (3.14b) 
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Thus, there are four straight-line orthogonal trajectories for a<l-c^=0.75 

and two straight-line orthogonal trajectories for aSO.75, except only one such 

orthogonal trajectory exists for a=l. Correspondingly, the patterns are 

labelled by the symbols P4, P2, Rl, 82. In contrast to the situation in Sec. 

3.2, the case a=0 is also of type P4 here. 

The X axis is the Longer Principal Axis of the Difference Cone (c<l). 

Consider first the case l<c<^l2. This case differs from the preceding case 

in two respects. First, for a=0, the long axis of the elliptical cone is now 

along the x axis. Second, Eq.(3.14b) now yields sign(x)>0, so that the two 

straight-line orthogonal trajectories with k#0 are inchned to the right. These 

features are illustrated in Figure 5, depicting the case c=1.25, which 

otherwise is entirely analogous to Figure 4 for c<l. According to Eq.(3.14a), 

the two straight-line orthogonal trajectories collapse into the positive x axis 

fbra=|c^-l|=c^-l=0.5625. 

Next, consider the case c>V2. It is illustrated in Figure 6 for c=1.7. This 

case has an interesting further feature in addition to those shown on Figure 

5. It arises from the fact that, according to Eq.(3.14a), the two straight-line 

orthogonal trajectories with k^K) will collapse into the positive x axis only for 

a = I c^-11 = (c^-1) > 2-1 = 1, in the present example for a=1.89. Thus, there 

exist now patterns where l<a< I c^-11, i.e., where the surface has a region 
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with f>0 and, also, two straight-line orthogonal trajectories with k^^O. These 

surfaces are illustrated on the three panels labelled 84 on Figure 6. For a=l, 

the negative x axis is no longer an orthogonal trajectory and it is therefore 

labelled R3. 

The surface patterns of type S4 exhibit thus the following new pattern: 

One downhill steepest-descent line enters the intersection point from the left 

along the negative x axis, but infinitely many steepest-descent lines leave the 

intersection point towards the right, initially parallel to the positive x axis, 

but quickly fanning out between the two bold-faced straight-line orthogonal 

trajectories with kv^O as indicated by the lightly shaded area in Figure 6. 

This pattern presents then a situation where a steepest descent line that 

could model a reaction path can fan out into an infinite number of steepest 

descent lines upon passing through an intersection point. This possibility 

further emphasizes the bifurcating character of the intersection region should 

the intersection point lie on a reaction path. 

3.4 The General Case (caI and a,b#0) 

In general, the surface pattern of f(x,y) has no symmetry and a more 

complicated structure than in the two special cases considered in Sees. 3.2 

and 3.3. Nonetheless, it remains true that the chief criteria characterizing 

the various topographies are (i) whether there exist straight-line contours 
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through the origin on which fCx,y) vanishes and (ii) how many straight-Hne 

orthogonal trajectories through the origin there are. We shall examine the 

analytic conditions pertaining to these two criteiia. 

Straight-Line Contours f=0 Through the Origin 

From Eq. (3.5), it is apparent that /(x,y) always vanishes at the origin and 

that there is always a region where /(x,y) is negative. Two fundamentally 

different general patterns are therefore possible, namely, regions where f(x,y) 

is positive do exist or such regions do not exist. The former case can be 

identified by observing that there must exist contour curves which separate 

the domain where f>0 from the domain where / < 0. Along such curves, 

/(x,y) vanishes which implies that 

-ax - by = (x^ + cV)^ • (3.15) 

Since this equation is of the form F(y/x) = 0, it determines one or several 

straight lines y/x = m = constant. The function /"vanishes therefore always 

on straight lines passing through the origin. Their slopes m are obtained as 

solutions of the quadratic equation 

(c^ - b^)m^ - 2abm - (a^-1) = 0 (3.16) 

whence 

m = (ab ± ^/D)/(c^.b"), D = b" + W-l). (3.17) 

The coefficients a, b, and c and the discriminant D are thus related by 
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^ + bW = 1 + D/c" (3.18) 

and three cases are possible: 

D > 0, I> 1. There exist two different solutions and and, 

hence, two straight lines. However, because of Eq, (3.15), the inequality 

ax + by = (a + bm) x < 0 (3.19) 

must also be satisfied. It implies that, for given values of a, b, and m, the 

values which x may assume are limited to having the opposite sign as (a + 

bm). Hence m^ and m^ generate only two half-lines, both of which end at the 

origin. Together, they form the contour /" = 0 which separates the domain 

where / > 0 from that where f <0. As before, we shall use again the symbol 

S to label such patterns. 

D = 0, + b^lc^ = 1. The two lines of the previous case coalesce into one 

line with m = ab/(c^-b^)=b/ac^. The condition (3.19) yields therefore the result 

x/a<0, i.e., that x must have the opposite sign as a. Since a is assumed to be 

positive, we thus always have one half-line with x<0 which ends at the 

origin. The region where/> 0 has again been squeezed out. The function 

/(x,y) assumes its maximum value f=0 on the mentioned half-line. As 

before, we shall use the label R for this pattern. 

D < 0, I< 1. In this case /(x,y) vanishes only at the origin and 

this is the point where /(x,y) reaches its maximum. /(x,y) is negative 

everywhere else. As before, we shall label this pattern by the symbol P. 
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Straight-Line Orthogonal Trajectories Through the Origin. 

From Eq, (3.5) it follows that the orthogonal trajectories of /(x,y) are 

functions y(x) which are defined by the differential equation 

dy/dx = fy/f^ = (br + c^)/(ar + x) (3.20a) 

with 

r = (x^ + cV)^ • (3.20b) 

This differential equation is of the homogeneous form 

dy/dx = fit), t = y/x (3.21) 

m = [b(l + c^t^)^ + cH]/[a(l + cV)"' + 1], (3.22) 

which can be reduced to a quadrature in t. The latter yields the parametric 

representation 

X = K exp{ Jdt[f(t)-t]"^}, y=xt, (3.23) 

where different values of the integration constant K determine different 

orthogonal trajectories. 

In general, the orthogonal trajectories are curvihnear and, with 

appropriate changes of the parameter values a, b, and c, their curvatures can 

invert. Whenever this happens, a separating orthogonal trajectory is found 

which is a straight line passing through the origin: y = kx. The condition for 

this to happen is obtained by inserting y=kx into Eq.(3.20). This yields 

[b(x  ̂+ c^V)^ + c^ kx]/[a(x'̂  + c^^)^ + x] = k = constant 

from which follows 
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ak - b = c g(k), (3.24a) 

where 

a = sign{x(c^-l)}, 

g(k) = lc'-l|k/(l+kV)"', 

(3.24b) 

(3.25) 

I.e., 

ak - b = g(k), when sign(x) = sign(c^-l), 

-ak + b = g(k), when sign(x) = -sign(c^-l). (3.27) 

(3.26) 

Equations (3.26) and (3.27) show that the straight lines y=kx end at the 

origin, i.e. they are again half-lines. Equations (3.24) - (3.27) are equations of 

the fourth degree for the slope k. The nature of their solutions can be 

recognized from the graphic representation in Figure 7 which exhibits a plot 

of the function g(k) of Eq(3.25) vs. k for some arbitrary value of c(?6l) as well 

as graphs of three straight lines (ak-b), denoted by A,B, and C, and three 

straight lines (-ak+b), denoted by A', B', and C. The abscissas of the 

intersections of any one of these straight lines with the function g(k) are the 

solutions of Eq.(3.24) for the pertinent values of a, b, and c. The lines A',B', 

and C yield the solutions of Eq.(3.27) and it is apparent that there always 

exists one such solution. The lines A, B, and C yield the solutions of 

Eq.(3.26) and there can be manifestly one, two, or three such solutions. Since 

we have b#0, the following conclusions can be drawn. 

First, there always exist two solutions with k>0. In most cases, they 



www.manaraa.com

82 

correspond to two straight-line orthogonal trajectories with positive slopes, 

one being a half-line with sign(x)=sign(c^-l), the other being a half-line with 

sign(x)=-sign(c^-l). The only exception is the case when a, b, and c satisfy the 

condition a^+bVc^=l, which leads to the pattern R, discussed after Eq.(3.19), 

when the two straight-line contours f=0 collapse into one such contour with 

x<0 and the slope m=b/ac^. It turns out that this limiting straight-line 

contour in fact satisfies Eq.(3.24). Indeed, replacing k by m=b/ac^ and sign(x) 

by (-1) in Eq.(3.24), one finds 

aOo/ac^) - b = sign(l-c^) 11-c^ I (b/ac^) / il+cFh^/a?c^)^ 

which simplifies to 

1 = l/(aW/c^)^, 

an identity that is in fact satisfied. This result implies that, in this case, the 

solution k>0 of Eq.(3.24) with o=sign(l-c^) is a contour inconstant and, hence, 

not a steepest descent line. It is also readily verified that fy/4 is no longer 

given by Eq.(3.20) in this case. Thus, the pattern E always has one straight-

line orthogonal trajectory less than the corresponding patterns P and S. The 

same result had been found for the specific cases considered in Sees. 3.2 and 

3.3. 

Secondly, there can exist two, one, or no solutions with k<0. They yield 

straight-line orthogonal trajectories with negative slopes, all of which are 

half-lines with sign(x)=sign(c^-l). The condition for having two, one or no 
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such trajectories is obtained as follows. According to Figure 7, the limiting 

case of one solution with k<0 corresponds to the line B which is tangent to 

the curve g(k). Equating the slopes of (ak-b) and g(k) yields 

a = IcMl/d+kV)"^, (3.28) 

and this equation, together with Eq.(3.26) embodies the requirements for 

tangency. It is possible to eliminate the variable k between Eqs.(3.26) and 

(3.28) and, thereby, one obtains the condition 

(a^)^ + (bV)^ = [(1 - c^)^]^ (3.29) 

between a, b, and c. By reference to the intercept b in Figure 7, it is readily 

seen that 

No solution k<0 exists when la/(c^ - 1)^ + lbc/(c^-l)|^ <1 (3.30a) 

One solution k<0 exists when | a/(c^-l) I ^ + I bc/(c^-l) M = 1 (3.30b) 

Two solutions k<0 exist where 1 a/(c^-l) M + I bc/(c^-l) | ̂ < 1. (3.30c) 

Classification of Patterns 

The distinctions made in the preceding subsections are combined 

graphically in Figure 8 which displays plots of 

a^ + bW = 1 (dashed curves) (3.31) 

as well as plots of 

I a/(c^-l) M + I bc/(c^-l) M =1, (solid curves) (3.32) 

in the a-b plane for various values of the parameter c. Four panels are 
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shown corresponding to the four cases 0<c<l/V2, 1/V2<c<l, l<c<V2, V2<c. 

Depending on the value of c, the two curves divide the first quadrant into five 

or nine regions which are labeled by the symbols introduced earlier to denote 

the various surface patterns that can result firom the corresponding 

parameter choices. The characteristics of the nine different types are listed 

in Table 1. On the panels of Figure 8, the patterns P2, P4, S2, S4 obtain in 

two-dimensional regions, the patterns P3, S3, Rl, R3 obtain on curves, and 

the pattern R2 obtains at points. It is apparent from Eq. (3.5) that the 

Table 1. Patterns for the function /(x,y) of Eq. (3.5) when a^^O, b#0. 

a'+bV 
la/(c=-l)l^ 

+ 
lbc/(c^-l)l^ 

Dimension 
of region 

where 

f > 0  

Number of straight line 
orthogonal trajectories 

a'+bV 
la/(c=-l)l^ 

+ 
lbc/(c^-l)l^ 

Dimension 
of region 

where 

f > 0  k>0, 
x<0 

k>0, 
x>0 

k<0, x(c^-l)>0 

P2 <1 >1 0 1 1 0 

P3 <1 =1 0 1 1 1 

P4 <1 <1 0 1 1 2 

Rl =1 >1 1 0 1 0 

R2 =1 =1 1 0 1 1 

R3 =1 <1 1 0 1 2 

S2 >1 >1 2 1 1 0 

S3 >1 =1 2 1 1 1 

84 >1 <1 2 1 1 2 
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function /(x,y) for (a = u, b = v, c = w) can be obtained from the function for 

(a = v/w, b = u/w, c = 1/w) by interchanging x and y and multiplying the 

entire function by w. Thus, for every point with a/b = a on a panel for c, 

there exists a point with a/b = a ̂  on the panel for c^ in Figure 9 such that 

the corresponding surfaces differ essentially only in the interchange of x and 

y. Therefore, if we consider c > 1 as well as c < 1 then we have to discuss 

only the patterns for a > b. Conversely, if we consider all values a and b of 

the panel for c, we do not have to discuss the panel for c \ 

Figure 9 depicts nine PES contour plots for c=2.29, corresponding to 

the nine patterns listed on the panel for oV2 in Figure 8. The panels on 

Figure 9 are arranged relative to each other in the same order as the regions 

corresponding to these patterns on the c>V2 panel of Figure 8. As before, 

solid bold-faced lines are contours f=0, and dashed bold-faced lines are 

straight-line orthogonal trajectories. The dark shaded areas to the left of the 

intersection on the S panels are regions where f>0. The light shaded areas to 

the right of the intersection on the panels S3, 84, R2, R3 are regions where 

infinitely many orthogonal trajectories leave the origin towards the right and 

fan out between the bold-faced dashed lines. It is apparent that the 

bunching of the orthogonal trajectories near the origin differs qualitatively 

for the three cases characterized by the Eqs.(3.30a), (3.30b), (3.30c). 

The patterns which one obtains for c<l differ from those of Figure 9 in 
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that the relative positions of the long and the short axis of the difference cone 

are interchanged with respect to the bold-faced contours and trajectories. 
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4. TOPOGRAPHY OF THE UPPER SURFACE 

From Eq.(3.5), we know that near an intersection the surface of the 

upper state can be obtained from that of the lower state by the relation 

Eupper(x,y) = -E,„„„(-x,-y). (3.33) 

In the case of S patterns, it is seen that both states have the same overall 

direction of their slopes and, at the intersection, merely exchange the 

steepness of their slopes. It is also apparent from Eq.(3.33) that the upper 

state has a valley floor wherever the lower state has a ridge. Consequently, 

whereas downhill reaction paths on Ek^gp will tend to veer away from the 

crossing, such reaction paths on E^pp^, will be funneled towards the crossing. 

As an example, Figure 10 displays contours and orthogonal trajectories of 

both states for the case S4 discussed in Sec. 3.3. The plot of the lower 

surface is identical with that for a=1.05 on Figure 6 except that the contour 

increment has been increased. The plot of the higher surface is obtained 

from it by Eq.(3.33). On both panels, the shaded area indicates where the 

energy is higher than the intersection energy, as before. For clarity, only 

steepest descent lines passing through the intersection are drawn (dashed 

lines). 

The negative x-axis is seen to be the floor of a valley on the upper 

surface descending to the intersection, whereas the positive x-axis is the crest 
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of a ridge on the lower surface descending from the intersection. It is 

apparent that on the upper surface, there exists a funnel of steepest-descent 

lines (shown in Figure 10) that are focussing toward the intersection and 

emerge on the lower surface where they fan out in a diverging pattern. On 

each of these steepest-descent lines the wavefunction of the one state goes 

continuously into that of the other state, as discussed in Sec. 2.3, and for 

these diabatic paths, the intersection is a diabatic valley-ridge inflection 

point [7]. It is apparent that these conditions strongly favor radiationless 

transitions from the upper surface to the lower surface. Outside the funnel of 

steepest descent lines shown in Figure 10, the steepest descent lines of the 

upper surface do not reach the intersection and stay on the upper surface. 

On the other hand, on the lower surface, the negative x-axis is a ridge 

descending towards the intersection and the steepest-descent Hne on this 

ridge emerges on the upper surface as the floor of a valley along the positive 

x-axis. All other steepest-descent lines on the lower surface veer, however, 

away from the intersection and stay on the lower surface. 

In the case of P patterns, the lower state has a pointed maximum at 

the intersection whereas the upper state has a pointed minimum. Thus all 

steepest descent lines of the upper surface lead to the intersection and 

emerge on the lower surface. There will be an even stronger tendency to 

funnel reaction paths (should there be one) towards the crossing with a 
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resultant radiationless transition to the lower state. 

In some of the cases considered, radiationless transitions from to 

Eupperj although less likely, may also occur. 
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5. CONCLUSIONS 

The topography of potential energy surfaces in the immediate vicinity 

of a crossing with another surface can have two main patterns - a peaked (P) 

pattern or a sloped (S) pattern. For S patterns, both PES's have downhill 

slopes and touch each other at the crossing points in the branching space. 

For P patterns, both PES's are elliptical cones pointing against each other 

with a common tip. A limiting pattern, called R, intermediate between the P 

and S patterns, is also possible where there exists a line along which E^ has 

zero slope on one side of the intersection and Eg has zero slope on the other 

side of the intersection. A considerable variety of patterns can occur for the 

steepest descent lines. In some, but not in all cases, infinitely many steepest 

descent lines enter or leave the intersection in certain, but not necessarily in 

all directions. 

The overall character of the steepest-descent lines is such that on the 

lower PES, reaction paths will be steered away from the crossing and tend to 

bifurcate in its vicinity, whereas on the upper surface, they will tend to be 

funnelled towards the intersection with a strong probability for a dynamic 

transition from one state to the other because the two states exchange 

character (continuity of energy slope and of wave function fi*om one state to 

the other) on any straight path through the intersection. It can therefore be 
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inferred that intersections are preferred locations for radiationless transitions 

from the higher state to the lower state. For S patterns, radiationless 

transitions from the lower state to the higher state are also conceivable on 

the downhill slope of both energy surfaces. 
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1\ 
\ / 
\ / 
\ / 

E. 2 ^2 

Peaked Crossing 

E, 

'-E, 

Intermediate Crossing Sloped Crossing 
(Semi-level) 

Figure 1. The "exchange of slopes" between two potential energy surfaces 

and the three basic patterns at an intersection 
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Definitions of pg, ^2 

Evolution of \|/j and Xj/j with Pg looping 
around the intersection 

a 0 7C/2 TZ 371/2 2tz 

PB •—> 0 > 

2 
A 

¥i.¥2 2(- > 

Figure 2. The evolution of the two eigenfunctions \i/i, ij/g in function space 

along an internal coordinate loop around the intersection. Pg = 

Projection of the intersection-adapted internal coordinate vector 

in the branching plane Pi, pg 
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c=1.00, !ncrement=0.30 

ÏS2 

— 3=0.75, b= 0.00 3=2.00, b= 0.00 

I i 3=0.50, b= O.ÔÔ ( 3=1.00, b= 0.00 3=1.50, b= 0.00 

S2 

I 3=0.95, b= 0.00 

Figure 3. Potential energy surface patterns near an intersection for the 

case c=l, b=0. Intersection = heavy dot at center. Ranges of 

abscissa and ordinate: -2.5<x<2.5, -2.5<y<2.5; solid lines: 

contour lines; bold-faced solid lines: E-Eo=0; shaded area: E-

Eo>0; contour increment=0.3.; dashed lines: orthogonal 

trajectories; bold-faced dashed lines: orthogonal trajectories 

which are straight lines 
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c=0.50, lncrement=0.30 

m 3=0.74, 

Figxire 4. Potential energy surface patterns near an intersection for the 

case c=0,5, b=0. For explanations of curves see caption of Fig. 3 
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c=1.25, increment=0.30 

3=0.10, b= 0.00 

a= 0.00, b= 0.00 

Figure 5. Potential energy siirface patterns near an intersection for the 

case 0=1.25, b=0. For explanations of curves see caption of Fig. 

3 
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c=1.70, increment=0.45 

3=0.50, b= 0.00 

0.00. b= 0.00 ^ 

Figure 6. Potential energy surface patterns near an intersection for the 

case c=1.70, b=0. For explanations of curves see caption of Fig. 

3, except that the increment between contours is 0.45 in this 

figure 
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B A C A' B' C 

(ak—b) (  — ak+b)  

Figure 7. 
A plot of the function g(k) defined in Eq.(3.25), of three lines (ak-

b) and three lines (-ak+b), where a,b>0. The intersections yield 

solutions of Eq.(3.24) 
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1/V2 < c < 1 
(c=0.75) 

.5 

.0 

0.5 

P2 

P4 
0.0 

0.5 0.0 

< C < 1/V2 
(c=0.50) 

S2 

.S4\ 
0.5 

R2 

P2 P4 
0.0 

1.5 L.O 0.5 0.0 

C >V2 
(c=l .60) 

1.5 

P2 1.0 

b 

R2 0.5 

P4 
S4 R3 

0.0 
0.5 0.0 

1 < C <V2 
(c=l .30) 

1.5 

1.0 RI 

b 
P2 

0.5 

-P4 
0.0 

0.5 0.0 

Figure 8. Graphs in the a-b plane for the classification of potential energy 

surface patterns near an intersection. Solid curves: plots of 

Eq.(3.32). Dashed curves: plots of Eq.(3.31). The symbols in 

various regions of the quadrant are defined in Table 1. Symbols 

on curves refer to those curves 
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c=2.29, increment=0.60 

P2 

8=0.83, b=1.28 3=0.64, b=1.28 

R2 

/ 3=1.28, b=0.75 a=0.91, b=0.95 

P4 

3=0.98. b=0.46 —' 3=0.64. b=0.46 

Figure 9. Potential energy surface patterns near an intersection for the 

case c=2.29, a#0, b^^O. For explanations of curves see caption of 

Fig. 3, except that the increment between contours is 0.6 in this 

figure 



www.manaraa.com

103 

c=1.70, a=1.05, b=0.00 

S4, upper surface 

S4, lower surface 

Figure 10. Contour maps (left) and perspective representation (right) of 

potential energy surfaces of two states in the vicinity of their 

intersection (Pattern S4). Left figures: solid lines = contours; 

increment = 0.55. On both panels the contour values decrease 

from left to right. The bold-faced solid straight lines are the 

contours Shaded areas = regions where 

E>Ejntersection' Dashed lines = steepest descent curves passing 

through the intersection. Only the bold-faced dashed lines and 

the x-axis are straight; all other orthogonal trajectories become 

tangent to the x axis at the intersection. The x axis goes from 

left to right on the contour maps and from back left to front 

right on the perspective figure 
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ABSTRACT 

An electronic-structure-based construction of diabatic states from two 

adiabatic states is formulated. It is accomplished by maximizing the 

configurational uniformity of the diabatic states with respect to the dominant 

configurations throughout the entire coordinate space. No configurational 

constraints are introduced. The matrix elements between the diabatic states 

are simply expressible in terms of the adiabatic energies and wavefunction 

coefficients. 



www.manaraa.com

107 

1. INTRODUCTION 

Over large regions of the internal coordinate space, adiabatic molecular 

potential energy surfaces can vary in very complex fashions. Many of these 

contortions arise from avoided and real crossings of these surfaces and, in 

almost all such cases, the physical and chemical understanding is greatly 

helped by expressing the adiabatic states in terms of diabatic states. This is 

because diabatic states typically exhibit simpler energy surfaces as well as 

less complex electronic structures in terms of dominant configurations. 

Notwithstanding this gain in simplicity, the definition of diabatic states has 

turned out to be a non-trivial problem. 

The interest in diabatic states has its origin in work on dynamical 

problems in regions where two potential energy surfaces cross or barely avoid 

crossing. Under such conditions, the Bom-Oppenheimer approximation is 

inadequate and couplings between different adiabatic wavefunctions must be 

taken into account. Since they are mediated through matrix elements 

between nuclear derivative operators which become very large and very 

difficult to calculate, the "dynamic construction" of "diabatic" states [1] has 

been guided by the goal of reducing these coupling terms to a minimum. In 

general, they cannot, however, be made to vanish altogether and, as yet, 

there exists no unique standard definition of such states [2]. The extensive 
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work in this area has been described in recent papers by Pacher, Kdppel and 

Cederbaum [3] where further references can be found. 

From a quantum chemical point of view, the electronic structure 

aspects of diabatic states are more immediately apparent, namely that in 

regions of real and avoided crossings there occurs a manifest switch in the 

configurational composition of the adiabatic states, whereas this does not 

seem to be the case for diabatic states. This observation suggests an 

"electronic-structure approach" to the problem of defining and determining 

diabatic states, namely as states which do not change their configurational 

character when the system passes through the region of a real or avoided 

crossing. We are aware of the following proposals to construct diabatic states 

in this manner. Hendekovic et. al. suggested two methods, one based on the 

maximization of the sum of squares of natural spin orbital occupation 

numbers [4] and another based on an interpolation of one-electron densities 

[5]. Werner, et. al. used a weighted sum of squares of adiabatic 

configurational coefficients for special types of wavefiinctions [6]. Pacher, 

Koppel and Cederbaum introduced a "minimal block diagonalization" to 

deduce diabatic states from adiabatic states [3]. 

In the present investigation, we present a new quantum chemical 

procedure for deriving diabatic states from adiabatic states. It is based on 

the configurational expansion of the electronic wavefunctions of the adiabatic 
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states. It generates diabatic states which span exactly the same function 

space as the adiabatic states and it maximizes the configurational uniformity 

throughout the coordinate space for hath diabatic states. No restrictive 

configurational bias is introduced which would prevent full freedom for the 

determination of the adiabatic or diabatic states. The algorithm is 

uncomplicated and straightforward. 

Our interest in this subject was motivated by the intention to use the 

interaction matrix between the diabatic states in order to elucidate the 

electronic causes for the conical intersection between the two lowest 

states of ozone. The method outlined below proved simple and effective in its 

application to this problem. The latter reported in an accompanying paper 

[1]. 

We have not examined the magnitudes of the dynamical coupling 

matrix elements between the diabatic states. But from the shapes of the 

diabatic potential energy surfaces obtained by this method in the mentioned 

application (see Figure 5 of reference [1]), it is apparent that they will be 

small. 
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2. CONSTRUCTION OF DIABATIC STATES 

2.1 Premises 

We start from the premise that MCSCF optimized wavefanctions are 

available over a region of the internal coordinate space for two orthogonal 

adiabatic states \}/i, % and that these wavefiinctions are expressed in terms 

of a common set of configurations Xa (cx=l,2,...^) generated from a common 

set of optimized orbitals. Normally, such wavefiinctions would result from 

state-averaged calculations. 

We furthermore assume that the orbitals can be unambiguously 

defined in such a manner that it is possible to follow each of them along a 

continuous path in the coordinate region of interest. That is to say, each 

optimized orbital evolves through a sequence of continuous deformations 

along any continuous path in coordinate space. By virtue of orbital 

occupations and spin structures, the unambiguous identification of orbitals 

yields then an unambiguous and coherent identification of deforming 

configurations Xa in the entire coordinate region of interest. 

Finally, it is assumed that one can identify a number of dominant 

configurations which determine the character of the two adiabatic states and, 

furthermore, that the orbitals have been defined in such a manner that, for 

any one molecular geometry, different adiabatic states are dominated by 
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different dominant configurations. Appropriate orbitals to accomplish this 

may be natural orbitals, localized orbitals, or orbitals uniformly determined 

by some other criterion. 

Our interest focusses, then, on those regions in coordinate space where 

there occurs a switch in the dominance of configurations between the 

adiabatic states xj/i, %, as shown by the following scheme: 

Dominant 

Configurations 

Adiabatic States 

Region I Region 11 

%1 ' %a dominant in dominant in Xj/g 

Xa+l"*Xa+b dominant in Yz dominant in xj/j 

It would seem that the aforementioned premises are required by any 

method for deducing diabatic states from the electronic structures of 

adiabatic states. 

2.2 Diabatic States 

The purpose of "electronic-structure-based diabatic states" is to 

simplify the structure of the electronic wavefunctions. To this end, we look 

for two diabatic wavefunctions (j)i, $2 which have the following attributes; 

(i) The two adiabatic states % can be decomposed into , or 

constructed from the two diabatic states $1, <^2 by a linear 
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(ii) 

transformation T, i.e., 

¥l = 

% ~ ^21^1 ^224*2" 
The diabatic states are orthogonal, as are the adiabatic states. 

Hence, T is orthogonal: 

TT  ̂ = = I 

(1) 

whence 

T = "^11 ^12 

^^^21 ^22) 

cosy -smy 

,siny cosy ) 

(iii) Any one of the diabatic states is dominated by one and the same 

(2) 

(3) 

set of configurations throughout the entire coordinate space of 

interest, as shown by the following scheme: 

Dominant Diabatic States 

Configurations Region I Region II 

Zl-Xa Dominant in (t)i 

Xa+l"*Xa+b Dominant in <j)2 

It is in this sense that the diabatic states are "simpler". 

In the sequel, we shall describe a method for deducing such diabatic states 

from the known adiabatic states. It is evident that the transformation T 

must be coordinate dependent. 

The adiabatic states are expressed, through coefficients in terms 
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of a large number of given configurations Xa (a=l,2,.._A.), spanning the 

configuration space, viz., 

% = E XaCan ^=1,2. (4) 
a 

Because of the orthogonalities 

= Sop, = 0^, (5) 

one has 

C'C = 5:(C„CJ = I. (6) 
a 

By virtue of Eqs. (4), (5), (6), the diabatic states are given by 

n=l 

whence. 

where 

411 -

n 
Orthogonality yields 

W = z % = (FT)ii - (TC 'CT)g - (TT), =5, (10) 
a 

In the following, it is assumed that the dominant configurations are listed 

first, as Xi X2—Za Za+i—Za+b» so that the remaining configurations follow as 

%a+b+i'—Xa- Typically, a+b is a relatively small number, whereas A, the 

dimension of the entire configuration space, is a large number. 
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2.3 Diabaticity Criterion 

Our objective, then, is to determine the 2x2 transformation such that, 

throughout, ())i is dominated by Xi— Za and ^2 is dominated by Xa+b- To 

accomplish this, we demand that, in Eq. (9), the transformation T be 

determined such that the quantity 

a a 4b 

a=l p=a+l 

becomes maximal. From Eq. (9) one obtains 

F, = CrPT),! (12a) 

with 

and similarly: 

with 

CgpCgm " Pmn' n,m-l,2 (12b) 
a=l 

Fb = CTQT),, (13a) 

a+b 
Q,™ - z = Q„, n,m=l,2. (13b) 

P=a+1 

By virtue of Eq. (3) we can rewrite Eq. (13a) as 

Q22 ~Qi2 
Fb = OTQTV with Q • 

,"^21 ^11 , 
Combining the expressions (12a) and (14) we obtain therefore for F of Eq 

(14) 

(11): 

F = (TllT)ii (15) 

where 
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a+b 
1̂1 ~ Pli Q22 - Z} ̂ =1 +  ̂C| 

a=l P=a»l 

a+b 

2 
P2 

^2 - ^22 + Qll - 12 + X ^ 
a»l p=a+l 

2 
pi 

a+b 
1̂2 1̂ 1̂2 Q12 ^̂ al̂ a2 ~ p̂l̂ |32 

P=a+1 

(16a) 

(16b) 

(16c) 
a«l 

A slight modification of the described method would be as follows. 

First, the dominant parts of the adiabatic wavefimctions are renormalized, to 

give 

a*b 

(a*b •' 
Hc l  
a"l y 

1/2 

^0» ~ 

and then, the maximization algorithm is applied to the quantity 

a a*b 

a=l p^+1 

The difference between the two procedures should be small. 

(17a) 

(17b) 

(18) 

2.4 The Transformation Matrix 

From the expression (15), it is apparent that the maximization of F is 

accomplished by diagonalizing the matrix R. The eigenvector with the larger 

eigenvalue yields (T^ijTji) which determines (j)i, whereas the eigenvector with 

the smaller eigenvalue yields (Ti2,T22) which determines 4)2- The solutions of 
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this eigenvalue problem can be expressed in the well-known form 

Ai = R + ^(ARf + Ru (19a) 

Aj = R - y^(AR)2 + RJ (19b) 

in T ^ •'•11 •'•12 

/ 

cosP/2 -sinp/2 (20) 
T T ^•'•21 •'•22J ,sin(3/2 

C
O

. 

8
 

where 

R = (Rii + R22)A AR = (R„ - Rg)/2 (21) 

cosp = AE//(AR)2 + , sinp = (^2) 

It is understood, of course, that the transformation T of Eq. (20) is 

used to transform the full expansion of and % as indicated in Section 2.2. 
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3. CALCULATION OF AH. AND H 12 

The hamiltonian matrix elements between the diabatic states are 

helpful in analyzing the physics determining the adiabatic states (see, e.g., 

ref [1]) as well as the character of the dynamics. By virtue of Eq. (7) these 

matrix elements are given by 

v ^ (23) 

Expressing and Eg in terms of 

Ê = (Ei+E2)A AE = (EI-E2)A (24) 

one obtains 

Hg = Êôg + AECr^Ty-T^jT^p (25) 

which, with the representation of Eq. (20) becomes 

Hjj = E + AE cosp (26a) 

H22 = Ë - AE cosp (26b) 

=-AE sinp (26c) 

If we now insert the values obtained for cosp and sinP by the maximization 

procedure of the preceding section, we finally obtain 

Hji = Ë + AE-AR/v^AR2+rJ (27a) 

H22 = Ë - AE-AR//ar2+r2, (27b) 

Hi2 = -AE-R^/^AR2+R^. (27C) 
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4. COMMENT 

A particular numerical aspect deserves careful attention in order to 

insure that <j)i and ^2 well as AH and vary continuously in the 

coordinate range of interest. There are two circumstances which can lead to 

apparent discontinuities in the diabatic states (t)i, ^2- One is the fact that the 

numerical calculation of the adiabatic states % can yield accidental 

arbitrary jumps in their signs in going from one point to a neighboring point. 

It is evident from Eqs. (16c) and (27c) that and, hence, change sign if 

only one of the adiabatic states \|/i, % change sign (AH is insensitive to it). 

Secondly, even if the two adiabatic states are carefully adjusted not to change 

sign from one point to the next, a sign change must occur in both in case one 

completes a closed path encircling an intersection point, in accordance with 

the Herzberg-Longuet-Higgins-Berry theorem [2]. The diabatic states ())i, ^2^ 

on the other hand, do not have this complication. They can be assumed to be 

continuous everywhere, and the discontinuity in the sign of %, ij/g can be 

considered as arising from the fact that the angle y in the 2x2 

transformation from (<î)i, ({>2) to (xj/i, %) [See Eq.(3)] is in fact 1/2 of an angle 

varying between -% and k. In our reconstruction of (01, (j);) from (Vi, i/g) > this 

half-angle effect is, in principle, compensated by the half-angle (p/2) in Eq. 

(20). A wrong sign of V}/i or %, combined with a wrong choice of the principal 
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value of P, can result in uncontrolled jumps in sign for ({)i or <j)2, and also in an 

interchange of (|)i and (j)2. The simplest way to avoid this numerical confusion 

is to monitor both, (j)i and and, if necessary, to make the necessary 

changes in sign and/or interchanges of (})i and (j)2, such that the configuration 

coefficients of both diabatic wavefunctions vary continuously over the entire 

region of interest. This is simpler than trying to make equivalent changes in 

the signs of \j/i and/or % or adjustments of the principal value of p. 
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PAPER IV. ELECTRONIC STRUCTURE BASIS FOR THE CONICAL 

INTERSECTION BETWEEN THE LOWEST TWO % STATES OF OZONE 
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ABSTRACT 

The quantum chemical construction of diabatic states from adiabatic 

states formulated in a preceding paper is used to express the lowest two ^A^ 

states of ozone in terms of its diabatic components and to determine the 

interaction matrix between them. An analysis of the electronic structure 

of the diabatic states leads to an understanding of the reasons for the sign 

changes in AH and and, hence, for the conical intersection between these 

two adiabatic states of like symmetry. 
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1. INTRODUCTION 

The two lowest potential energy surfaces of ozone, which we have 

mapped out in symmetry in previous investigations [1], are notable for 

several reasons. First, the ground state surface has two minima-, the 

experimentally observed open structure, with a angle of 116° and the, as yet, 

experimentally unobserved equilateral triangle ring structure. The ring 

minimum lies about 30 kcal/mol above the open minimum and slightly above 

the dissociated species Og+O. Secondly, less than 0.04Â away from the 

transition state between the ring and open structures of the ground state, the 

second state has a minimum. Finally, these two states of like symmetry 

were found to cross in a conical intersection within 0.04Â of the 

aforementioned upper state minimum and the ground state transition state. 

Since this seems to be the first instance of an intersection between the two 

lowest states of like symmetiy near the groundstate minimum in a common 

molecule, it is of interest to explore the causes for such a crossing. In the 

present investigation we look, therefore, for those features of the electronic 

structures of this molecule which lead to the discovered intersection. 

The existence of the two minima is a consequence of the fact that there 

exist two electronic structures, A and B, with different stabilities in different 

parts of the internal coordinate space. For the equilateral minimum. 
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structure A is more stable than structure B whereas, for the open Tnim'mnm^ 

structure B is more stable than structure A. Under such conditions, one 

usually encounters an avoided crossing near the transition state. In the case 

at hand, the two states become, however, degenerate at the crossing point. 

In the language of the fundamental analysis of surface crossings [2], the two 

electronic structures A and B correspond to two diabatic states (j)i and from 

which the two adiabatic states xj/i and % can be constructed. The change in 

stability between (|)i and ^2 implies that, near the ridge of the potential 

energy surface, which separates the catchment basins of the two minima in 

the Cgv restricted two-dimensional coordinate space, the energy difference 

AH = H11-H22 = - ((t)2tHl(t)2> (1) 

changes sign. Along this ridge, the two adiabatic states are close in energy. 

A true intersection will occur if, someplace along the line AH=0, the 

additional condition, 

= (VilHhj/2) = 0 (2) 

is also satisfied. That is, the off-diagonal element H12 must change sign as 

well and the degeneracy of the two states occurs where the curves Hi2=0 and 

AH=0 intersect. 

In view of these fundamental connections, it seems likely that an 

understanding of the factors that can lead to an intersection between states 

of like symmetry can be expected from a closer look at the energetics of the 
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diabatic states. This approach is chosen in the present investigation. The 

adiabatic and 2^Ai states of ozone are decomposed in terms of two 

diabatic states, which are determined by the method described in the 

preceding paper [3], and the critical quantities AH and are calculated 

over the entire region of interest in coordinate space. An examination of the 

electronic structures of the diabatic states, then, leads to an appreciation of 

the reasons for the sign changes of AH and which are so intimately tied 

to the conical intersection. 
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2. THE ADIABATIC AND DIABATIC POTENTIAL ENERGY SURFACES 

2.1 Coordinate Space 

We choose the coordinates x and y defined through Figure 1 as the two 

internal coordinates for the Cg^ restricted deformations of ozone. The center 

atom is at the origin and the two end-atoms are at mirror image positions 

with respect to the y-axis. 

The potential energy surfaces were calculated at the approximately 

500 points shown as dots in Figure 2. Special symbols in the figure mark the 

various critical points of the two surfaces. A particular sequence of dots 

marks the Une firom one ground state minimum to the other through the 

intersection point. Also shown are the curves AH=0 and H^gsO, which we 

shall determine in the sequel (solid line and dashed line). 

2.2 Orbital Space 

The Full Optimized Reaction Space (FORS) is the configuration space 

spanned by all configurations that can be formed firom the set of 12 orbitals 

which can be perceived as molecule-deformed minimal basis orbitals ("quasi-

atomic orbitals") on the three oxygens. They are depicted schematically in 

Figure 3. Nine of them are symmetric with respect to the molecular plane 

("o-type", A' irrep in Cg symmetry). From them one obtains the bonding-
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adapted a molecular orbitals 

hoi = N.(ho'+h/'), K = N.(ho'-h/') 

h,2 = hi* = NChZ-W) (3) 

ho2 = Nih^ho"), K = Nih^'-ho") 

The remaining three quasi-atomic orbitals are antisymmetric with respect to 

the molecular plane ("7t-type", A" irrep in CJ. 

Appropriate linear combinations of the quasi-atomic orbitals belong to 

irreps of Cg, (A'-^A^Bj ; A"->A2,Bi)- For the ct orbitals one has in particular 

hi2 = o, : Ai hi*2 = a. : Bg. (4) 

The symmetry and bonding adapted Jt-type orbitals are of the form: 

7t = CqIZQ + C,(7ti+7t2) : 

TT. = C.CÎTI-TCG) : AG (5) 

Tt* = CqTCq - c/(7tiHirc2) ; Bi 

Figure 4 displays contour plots of the natural orbitals of the actual 

MCSCF calculations which correspond to the orbitals G+, a., 7t. discussed 

above, for three points on the line leading from one minimum to the other 

(See Figure 2). One can see that the character of these orbitals changes very 

little along this entire path so that they remain clearly identifiable along the 

entire path. 

2.3 Configuration Space 

In the entire region around the intersection as well as the open 

minimum, the orbitals ho/ and hog* are found to have very small occupations 
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and all other orbitals are doubly occupied, except the orbitals a, % 

which have changing occupations in the region of interest. This distribution 

of occupation numbers arises from the fact that, in this region, the 

wavefunction is dominated by the following four configurations (the entire 

FOES space is spanned by A=4067 configurations): 

114,4,+) = b^'St^+) = Ka^V)a!a!7i!) 

Il4,4,-) = b^V") = 
(6) 

112,6,+) = b^®+) = Ka^V)7i:!n?a  ̂

112,6,-> = b^V-> = 

where 

= (ho'")"(h/")'(h^'")%i)"V (7) 

It is obvious that for the ring minimum, where the symmetry is Dg^, six 

additional configurations will have comparable weight, namely those obtained 

by the following substitutions: 

(i) a_ = hi*2 ->hoi or in Il4,4,+) and Il4,4,) 
(8) 

( i i )  AQ J  ->^01 or ^02 ~^^o*2 in Il2,6,+). 

Since our objective is the elucidation of the intersection, we choose as 

the dominant configurations of the adiabatic states only the four listed in Eq. 

(6). The dominance of these configurations in % and % is shown in Table 1. 

In each of the fotir cases, the first listed configuration is the one with the 

lower energy, which survives in the SCF approximation, whereas the 

configuration listed second provides correlation to the first. 
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Table 1. Dominant Configurations in the and the states 

Open Basin Ring Basin 

Ground state W+), kfV-; 

Excited state 2^Ai 

We anticipated that the implementation of the methodology proposed 

in the preceding paper [3] had to be elaborated in detail and required 

considerable testing as we went along and, hence, that wavefimctions would 

have to be evaluated at many points. We therefore decided to begin by 

carrying through the procedure in a configuration space of a dimension less 

than 4067. In fact, we limited the configuration space to the four 

configurations given in Eq. (6). It should be noted that the determination of 

the matrix T which yields the diabatic states would proceed no differently 

than in the present calculations and the numerical values obtained for the T^ 

would be very little different if the calculations were based on the 

corresponding four dominant configurations of the full FORS wavefunction. 

The main difference would be that, in the end, the transformation T would be 

apphed to the adiabatic states \|/i, % expanded in terms of 4067 

configurations. 
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2.4 Potential Energy Surfaces 

The adiabatic states l^A^ and 2^Ai were determined by two-state-

averaged MCSCF calculation in the space of the four configurations of Eq. 

(6). The orbitals were expanded in terms of a Dunning-Hay (9s5pld/3s2pld) 

basis of 45 segmented contracted atomic orbitals [4]. (The d-orbitals were of 

the cartesian type with ^^=0.85). The calculations were performed with the 

program MOLPRO of Werner and Knowles [5]. 

Contours of the two surfaces are displayed in the upper two panels of 

Figure 5. These surfaces qualitatively reproduce all features of the FORS 

potential energy surfaces with one exception: The ring minimum does not 

have Dgij symmetry. This is, of course, due the fact that we have omitted the 

six correlating configurations mentioned in the preceding section. Table 2 

compares the critical points of the two surfaces obtained by the present 

wavefunction with those of the FORS wavefunction. The good qualitative 

agreement is a consequence of the dominance of the four configurations in 

the FORS wavefunction. 

From the adiabatic states, we determined the diabatic states by the 

procedure described in the preceding paper [3]. From the dominance table 1, 

it is apparent that one of the diabatic states must be dominated by the two 

(or^%^) configurations throughout, whereas the other diabatic state must be 

dominated by the two configurations everywhere. Thus, in Eq. (10) of 
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the preceding paper, the index a was taken to cover the two 

configurations and the index |3 to cover the two (a^Tt®) configurations. The 

quantities were evaluated, cosp and sinP were calculated and the elements 

of the transformation matrix T were determined. We discussed in Section 2.4 

of the preceding paper the precautions that must be taken in order to obtain 

continuous diabatic states. Contours of the surfaces of the diabatic states are 

displayed in the lower panels of Figure 5. It is apparent that each of the two 

Table 2. Comparison of geometries of critical points determined with 4 

configuration MCSCF wavefunctions to those determined with 

FORS wavefunctions 

4 Config MCSCF 

9 R 

FORS (4067 configs) 

0 R 

Open Minimum 114.69 1.265 116.32 1.298 

Ring Minimum 68.10 1.366 60.00 1.470 

Upper Minimum 88.43 1.370 83.59 1.441 

Transition State 86.40 1.351 83.86 1.431 

Intersection 88.38 1.375 83.18 1.476 



www.manaraa.com

133 

dîabatic states has a Tninimnnri which coincides with one of the two minima of 

the adiabatic ground state. 

On all four panels of Figure 5, all critical points are marked, (On the 

first one, the lines AH=0 and Hi2=0 to be discussed below are also shown). 

The difference AE between the two adiabatic state energies is 

displayed in Figure 6. The difference is seen to be very small all along the 

groundstate ridge separating the basins of the two minima which as we shall 

see in the sequel, is in fact the line given by AH=0 . The graph at lower 

right, plotting AE along this line, shows the typical pattern of the conical 

intersection at the point marked by a cross on the enlarged panel at the 

lower left. 
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3. QUANTITATIVE ANALYSIS OF THE INTERSECTION 

3.1 The Surfaces of AH(x,y) and Hi2(x,y) 

The crucial quantities for the elucidation of the intersection are the 

functions AH(x,y) and Hi2(x,y) as defined by Eqs. (1) and (2). As a first step 

in our analysis, we examine the contour maps of AH and H^g in order to 

establish where they change sign. The contours are displayed on the two 

panels on the left hand side of Figure 7 where negative values are indicated 

by broken lines, positive values by solid lines, and zero contours by bold-faced 

soHd lines. Both contours AH=0 and Hi2=0, are shown on both panels in 

order to identify the intersection. They were also shown on Figure 2 and on 

the upper left panels of Figures 5 and 6 so as to show that this intersection 

coincides indeed with the surface crossing, as required by theory. The upper 

left panel of Figure 5 shows that the line AH=0 is a straight line following 

the ridge separating the ring minimum basin from the open minimum basin 

of the ground state. Figure 6 shows that the two adiabatic states are very 

close along this entire line. 

As a further illustration, the graph at the lower right of Figure 7 

displays a quantitative plot of AH and H^g along the dotted line which 

connects the two minima and passes through the intersection (see Figure 2). 

In the subsequent sections, we shall address the question how the variation 
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of AH and along the line connecting the two minima, as displayed by this 

graph, can be related to the electronic structures of the diabatic states. 

A comparison of Figure 8 with Figure 6 illustrates the fact that an 

accurate determination of the intersection point is in fact more efficiently 

accomplished through the intersection of AH=0 and Hi2=0, than by finding 

the point where AE vanishes. 

3.2 The Wavefunctions 

We begin by examining the configurational expansions of the two 

diabatic states which we denote as 

(j)i = = 114,4) and <j)2 = = 112,6). 

Both of them are linear combinations of all four configurations. However, we 

expect that 114,4,+), 114,4,-) dominate in 114,4) and that Il2,6,+), 112,6,-) 

dominate in Il2,6). This is indeed borne out by Figure 9 which exhibits 

plots of the four coefficients of the two states along the line connecting the 

minima. Note the difference in the ordinate scale between the dominant and 

the minor coefficients! 

Of great relevance to the question to be discussed here is, however, the 

following additional observation: 

Within each diabatic state the relative weight of the two dominant 

configurations changes significantly. 
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Examination of the left hand side of Figure 9 reveals indeed the pattern 

formulated in Table 3. The coefficient relationships implied by this Table can 

be readily understood. At the ring structure, the configurations 114,4,+) and 

114,4,-) have approximately equal weight because the MO s and tc. would 

be degenerate for Dgj, symmetry. However, for the open structure, is a 

nonbonding orbital whereas %+ is an antibonding orbital so that 114,4,-) is 

more stable than 114,4,+). On the other hand, the configurations 112,6,+) 

and 112,6,-) have approximately equal weight for the open structure since, 

here, the MO s and a are almost degenerate because, due to the distance 

between the end atoms, the bonding-antibonding effect is small. For the ring 

Table 3. Relative weights of the two dominant configurations in the 

diabatic states 114,4) and 112,6). 

Configurations in Ring Minimum Open Minimum 

diabatic states 

114,14,+) inl 14,4) approximately small 

114,4,-) in 114,4) equal weights large 

112,6,+) in 112,6) large approximately 

112,6,-) in 112,6) small equal weights 
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structure, however, the two end atoms have come close together so that G+ is 

a bonding MO and a. is an antibonding MO. Hence, Il2,6,+) is more stable 

than 112,6,-). 

The adiabatic states are expressed in terms of the diabatic states by a 

transformation matrix T, given by the rotation angle y, as formulated in Eqs. 

(1) and (3) of the preceding paper. The calculated variation of this angle 

along the line connecting the two minima is shown in Figure 10. The graph 

at the lower left displays the overall variation of (yMti). The other graphs 

display enlarged presentations for three different regions. The plots exhibit 

the change in dominance of the two diabatic states in the two adiabatic states 

upon crossing the ridge between the two ground state basins. They show 

that this change is extremely sudden. The changeover would be 

discontinuous if the line connecting the minima would pass exactly through 

the intersection point. In fact, it misses this point by a little, and, it is 

therefore possible to establish the displayed continuous variation within a 

range of 0.0002Â from the ridge. 

If one substitutes the expansion of the diabatic states (as given by 

Figure 9) in the transformation to the adiabatic states (as given by Figure 

10), then one obtains the expansions of the adiabatic states in terms of the 

four configurations. The resulting coefficients are displayed in Figure 11. 

These coefScients were, in fact, the starting point of our calculations from 
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which the data of Figures 9 and 10 were deduced by the method of Section 2. 

3.3 Configurational Analysis of AH and Along the Line Connecting the 

Two Minima 

Analysis of AH 

The upper panel of Figure 12 contains plots of the energies of the four 

configurations as dotted lines. Round symbols denote the two configurations 

that would appear in an SCF calculation, diamond symbols indicate the two 

configurations that are the dominant correlation-type configurations. 

The solid symbols correspond to the 112,6) configurations. At the ring 

structure 112,6,+) is much more stable than 112,6,-). This is because, here, 

is a bonding MO whereas a. is antibonding. At the open structure, the 

configurations have, however, almost equal energies, since at that distance of 

the end-atoms fi-om each other, and a. are both non-bonding MO's. 

The open symbols correspond to the 114,4) configurations. At the 

open structure 114,4,-) is more stable than 114,4,+) because, here, %, is a 

non-bonding MO, whereas is an antibonding MO. However, at the ring 

structure, the energies of the two configurations are quite close to each other, 

since for exact symmetry, the orbitals and 7i. would be degenerate. 

It is also apparent that, for the ring structure, the configuration 

112,6,+) is much lower in energy than both 114,4) configurations whereas. 
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for the open structure, the configuration 114,4,-) is much lower in energy 

than both Il2,6) configurations. Thus, the bonding I non-

bonding I antibonding effects of the four molecular orbitals for the various 

geometries straightforwardly explain the crossover of the energies of the 

diabatic states which are displayed by the two solid lines. 

The lower panel of Figure 12 exhibits the values obtained for AH by 

(i) using the full four-configuration expression; (ii) using only the two 

dominant configurations in each diabatic wavefunction; (iii) using only the 

SCF determinants 112,6,+) and 112,6,-) in the calculation. It shows that the 

dominant configurations determine the overall character of the AH curve. 

Analysis of Hj2 

We saw that the sign change in AH can be easily related to changes in 

orbital stabilities caused by changing bonding/nonbonding/antibonding 

interactions. Such changes of (H11-H22) with changing molecular geometries 

are extremely common. Sign changes in H^^, on the other hand, are more 

difficult to understand. But, here, they are crucial: Wherever H^g is nonzero, 

an avoided crossing occurs when AH changes sign. The occurrence of a true 

crossing hinges on H22 changing sign in addition to AH doing so. 

For an explanation of the behavior of H^g, it is sufficient to use the 

expansion of the diabatic states in terms of their respective two dominant 
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configurations, viz., 

112,6) = aJ12,6,+) + aJ12,6,-) 

114,4) = bJ14,4,+) + bJ14,4,-) 

The values for the coefficients in these equations are obtained from those on 

the left-hand graphs of Figure 9 by renormalization. It is apparent that a+ 

and b. are positive, whereas a. and b+ are negative. With these (approximate) 

expansions the off-diagonal hamiltonian matrix element becomes a sum of 

four terms; 

= (12,6IHI14,4) 

a,b,(12,6,+lHll4,4,+) + a,b.(12,6,+lHll4,4,-) (10) 

+ a.bjl2,6,-lHll4,4,+) + a.b.<12,6,-iHll4,4,-) 

The solid lines in the top panel of Figure 13 displays the quantitative values 

of the four terms in Eq. (34) along the line connecting the two minima. The 

values plotted are the matrix elements multiplied by the coefficients. The 

sum of the four contributions is the dotted curve which is practically identical 

with the exact curve in the lower right panel of Figure (7). It is apparent 

that the reason for the sign change in the curve is the fact that the 

negative contributions change significantly in magnitude along the path. 

The lower two panels provide the decomposition of the contributions 

shown in the top panel in terms of the orbital coefficient products and the 

matrix elements between the configurations. The former are displayed in the 

middle panel, the latter are exhibited in the bottom panel. An examination 

of these two panels reveals that the variations of the contributions on the top 
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panel are due to the variation of the coefficient products and not to those of 

the matrix elements between the configurations, (note that the negative 

contributions on the top and middle panels change by factors of 2 to 3, 

whereas the matrix elements in the bottom panel vary only by about 10%). 

The matrix elements are all positive because all four configurations differ 

from each other in doubly occupied orbitals so that all matrix elements are 

exchange integrals. 

The sign change of is thus related to the changes in the negative 

coefficient products in the middle panel. The latter are however, a direct 

consequence of the changes in the relative weights of the dominant 

configurations within each diàbatic state which we discussed in detail in 

Section 3.2. There exist many examples of two diabatic state exchanging 

dominance in two adiabatic states, where each diabatic state contains only 

one dominant configuration and where these two dominant configurations 

differ (as in the case here) by a doubly occupied orbital. In these common 

cases, the matrix element is approximately the exchange integral 

\.v) between those orbitals in which the two dominant configurations differ. 

Since such integrals are always positive they cannot change signs. 

Consequently, the reason for the possibility of a conical intersection in the 

present case is the presence of more than one dominant configuration in each 

diabatic state and the fact that, on the path from one mim'Trmm basin to 
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another, not only do the diabatic states exchange dominance in the adiabatic 

states but, moreover, that there occurs an internal exchange of dominance 

between configurations within each diabatic state. The reasons for these 

changes in the weights of the configurations were explained in Section 3.2. 
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4. CONCLUSION 

The quantum chemical definition and construction procedure of 

diabatic states, formulated in the preceding paper [3], has been applied to the 

decomposition of the two lowest states of ozone (the lower one being the 

ground state) in terms of diabatic states. 

Through an examination of the confîgurational expansions of these 

diabatic states, it proved possible to identify those features of the electronic 

structure which are related to the occurrence of a conical intersection 

between these two states. 

It is concluded that, in cases where the dominant configurations of the 

diabatic states consist of doubly occupied orbitals only (as is common for 

ground states), an intersection can occur only if each diabatic state itself 

contains more than one dominant configuration and if the weights of these 

configurations within the diabatic states change significantly in the region of 

the coordinate space where the intersection occurs. Such changes can happen 

as the result of changing bonding interactions. 
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Y 

Figure 1. Internal coordinates for ozone in 
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AH=0 
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X 

Figure 2. Data points calculated in 

Dots mark the points at which energies were calculated. 

Medium size dots: path between lower surface minima. Large 

dots: lower surface minima. Empty dot: upper surface minima. 

Triangle: ring-opening transition state, x = intersection between 

the surfaces. Solid line: H^gzO. Dashed line: AH=0 
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71 valence atomic orbitals 

Figure 3. 

Minimal Basis Valence Orbitals in O3 

Schematic drawing of the active orbitals of ozone 
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6a, 

G. 

4b2 

1^2 

2bi m-::\ 

Ring Min Ridge Open Min 

Figure 4. The molecular orbitals of ozone at the three critical points on the 

path between the two ground state minima 

Solid lines: positive contours. Dashed lines: negative contours. 

Dotted lines: zero contours. The a orbitals are plotted in the 

plane of the molecule. The TU orbitals are plotted in a plane 

slightly above the plane of the molecule 



www.manaraa.com

149 

Adiabatic Energy Surfaces 

Ground State (EJ 
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Excited State (Ej) 
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<(t)ilHI(Jij), <|)j = 114,4) 

Diabatic Energy Surfaces 

((i)2lHI<t)2).(t^ = 112,1 

.6 .7 .8 .9 1.0 1.1 

Figure 5. Energy surfaces of the lowest two states of ozone in 

Solid dots; minima of the lower surface. Empty dots: minima of 

upper surface. Triangle: ring-opening transition state, x: 

intersection between the surfaces. Solid lines mark Hi2=0 and 

AH=0. Contour increment: 10 millihartree. 
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.6 .7 .8 .9 1.0 1.1 1.2 1.3 A 
X 

Upper left: 
AE=(Ei 
Increment=20mh 

Lowest contoui^ômii 

Lower left: 
AE inside box of 
upper left panel. 
Increment=5mh 
Lowest contour=lmh 

Lower right: 
AE for bold points 
on diagonal of 
lower left figure. 

.95 À 1 .80 .83 .86 .89 .92 .95 .98A .80 
X 

Figure 6. The energy difference AE=(Ei-E2)/2 
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.6 .7 .8 .9 1.0 1.1 1.2 U A 

Upper left: 
AH=(Hii-H22)/2 
Increment=20mh 

Lower left: 

^12 
Increment=lmh 

Lower right: 
AH and H^2 
along line between 
ground state minima. 
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100- •  
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AH 
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20 -• - -  2  
-0.10 -0.05 \0.00 0.05 0.10 0.15 

Y 

•• -2 

.6-

.5-

Open Min Ring Min Ridge 

X 

Figure 7. The surfaces of AH and Large dots: minima of the lower 

surface. Small dots: path between the minima. Solid lines: 

AH=0 and H^gsO. Negative contours are dashed. Positive 

contours are solid. Zero contours are bold and solid 
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0.92 

0.89 

0.86 

0.83-

0.80 

0.80 0.83 0.86 0.89 0.92 0.95 0.98 

X i n Â  

Figure 8. Contours of AH and near the intersection 

Solid lines: positive contours. Dashed lines: negative contours. 

Bold solid lines: zero contours 
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Dominant coefficients Minor coefficients 
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|14,4,+) — 
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— Coefficients of (}) J = 114,4) 114.4,-) = 1 (a%^) o!%2). II Î (a'V) a? Ti\ ) 

Coefficients of 02 = 112,6) 112,6.+) = 1 (<y'°7:^) 112,6.-) = KI )  

Figure 9. Variation of the coefficients of the diabatic states along the path 

between the ground state minima 
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-.0001 0 .0001 

0.04 
Ridge 

0.02 

0.0 

-0.02 

0.5 

Open Min 

-.15-.10-.05 0 .05 .10 .15A 

Figure 10. Angle of rotation from diabatic to adiabatic states along path 

between the ground state minima. Angles are in units of 7i/2. 

Distances from ridge are Â. 
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Coefficients of Adiabatic State 1 

112.6.+) 
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114,4,-) 

025 
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Ring Structure 

-025 

-0.50. 

-0.75 

-1.0 

Coefficients of Adiabatic State 2 
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112,6.-) 

Open Structure 

Valence Configurations: 

I12.6.+) = 1 112.6.-) = (CT'°7t-) %^%3) 

I14.4.+) = 1 (ct' 114.4,-) = 

Figure 11. Variation of the coefEcients of the adiabatic states along the 

path between the ground state minima 
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Analysis of 
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Lower Panel: 

AH between exact and 

approximate diabatic states. 

From full four determinant 
wavefunction: 
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Figure 12. Decomposition of AH in terms of configurational contributions 
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Figure 13. Decomposition of in terms of configurational contributions 
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PAPER V. THE INTERSECTION SEAM BETWEEN THE l'A' AND 2'A' 

STATES OF OZONE 
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ABSTRACT 

The intersection seam between the two lowest ^A' states of ozone has 

been determined in full. The potential energy surfaces and the seam are 

calculated and discussed in perimetric coordinates which exhibit the full 

three-dimensional symmetry. The seam is shown to form a closed curve 

which crosses the Cgv restricted coordinate planes at six points. Three of 

these correspond to the previously determined intersection, the starting point 

of the present search. The other three correspond to highly repulsive regions 

on the potential energy surface where two atoms approach each other to 

within 2/3 of the Og bond length. At the former three points, both states 

have ^Ai symmetry but, at the latter three points, one state has ^A^ 

symmetry whereas the other has symmetry. Consequently, there exist 

three additional branches of the intersection seam between these two states. 

Each of these branches lies entirely in one Cg, restricted coordinate plane and 

connects to the aforediscussed Cg-seam in one point. The existence of a 

further intersection seam is established. A novel method for determining 

intersection points is described. 
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1. INTRODUCTION 

In recent investigations [1], we have found that the ground state of 

ozone has a point of degeneracy, a conical intersection, with the first excited 

state of like symmetry CA^) in the Cjv restricted two-dimensional internal 

coordinate space between the two ground state minima. We have also 

identified those features of the electronic structure which are responsible for 

this somewhat unusual phenomenon [2]. 

In view of the fundamental theory pertaining to conical intersections 

[3], it was apparent from the beginning that the point found would have to be 

a point on a one-dimensional curve along which the two states remain 

degenerate in the full three-dimensional internal coordinate space: an 

intersection seam between the I'Aj and the stages. Since, to our 

knowledge, there exist no previous examples of ab-initio determined full 

intersection seams, it seemed of general interest to map out this particular 

seam rather carefully in the full internal coordinate space of Cg symmetry. It 

was also an intriguing question whether the seam would be a closed curve or 

move out toward the dissociated species without closing. 

In what foUows we shall describe the methods we developed for 

following an intersection seam and the characteristics of the seam which was 

established. 
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2. ENERGY FUNCTIONS IN TERMS OF PERIMETRIC COORDINATES 

2.1 Coordinate Space 

For the present investigation, it is essential that all three nuclei be 

treated on an equal footing. To this end, we shall use perimetric coordinates 

v/hich, previously, have been used by James and Coolidge [4], Pekeris [5], 

and Davidson [6]. We discuss relevant elements of these coordinates in some 

detail in a companion paper [7]. 

If r^gj 1*23, rgi are the three internuclear distances, then the perimetric 

coordinates Sj, Sg, Sg are defined by the formulas 

Sj + rjk = s = r/2 (D 

s = Si + Sg + Sg (2) 

r = ri2 + rgg + rg^. (3) 

They can be separated into the scale coordinate s and the angle-dependent, 

but scale-independent shape-coordinates which are related to (s^, Sg, Sg) 

by 

Si = S ( - yVe + 1/3 ) 

$2 = S ( - yVe + 1/3 ) (4) 

Sg = s ( 2yv/6 + 1/3 ) 

The parameter space of the shape coordinates (Çj, covers an equilateral 

triangle whose dimensions are displayed in Figure 1, where some special 

points and regions are indicated as well. Also useful are the coordinates 
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Xi = X2 = s^, X3 = s/Vs 

which, by virtue of Eq. (4), are related to (s^, Sg, S3) through an orthogonal 

transformation that places the xg-axis along the first-octant diagonal of the s^, 

S2, S3 axis system. In order to fully appreciate and visualize the meaning of 

these coordinates, the reader should consult the explicit discussion in 

reference [7] which also clarifies the following statements. 

When the shape coordinates fall on one of the perpendiculars fi*om one 

comer of the triangle in Figure 1, through the center, on to the opposite side, 

then two intemuclear distances are equal and this remains true in the entire 

plane spanned by this perpendicular line and the Xg axis. E.g., for all points 

with ^1=0, be they on the ^2 axis in Figure 1 or in the plane spanned by Xg 

and Xg, the molecule is isosceles, with nucleus 3 at the apex. The center 

point, ^1=^2=0, as well as all points on the Xg axis, correspond to equilateral 

molecules. 

Two points in the shape-coordinate triangle, which are related to each 

other by reflection with respect to the perpendicular fi-om comer (i) in Figure 

1 to the opposite side (j-k), describe two molecules which are obtained fi'om 

each other by permuting atoms j and k and, hence, their shapes are each 

other's mirror images with respect to any reflection plane normal to the line 

connecting nuclei j and k. 



www.manaraa.com

164 

2.2 Energy Surfaces for Homonuclear Triatomic Molecules 

Since ozone is a homonuclear molecule, its potential energy surface 

(PES) must be invariant with respect to all permutations of its nuclei. By 

virtue of what has been said in the preceding section, it is readily seen that 

this invariance implies the invariance of the potential energy surfaces with 

respect to the symmetry operation of the group Cg^, if applied in the 

parameter space of the perimetric coordinates, with the Cg axis along the Xg 

coordinate axis and the three planes of symmetry being the planes spanned 

by the Xg axis and the normals from the comers of the shape-coordinate 

triangle of Figure 1 on to the opposite sides. Each PES can therefore be 

generated from its values in 1/6 of the entire coordinate space. The 

projection of this part onto the shape coordinate plane is shaded in Figure 1. 

It follows, furthermore, that the planes spanned by the Xg axis and the 

normals from the comers of the coordinate triangle of Figure 1 on to the 

opposite sides, i.e. the symmetry planes of Cg^ in the parameter space, 

contain the coordinates of all those molecules which possess Cg, symmetry. 

We shall therefore call these planes the Cg^-restricted coordinate spaces. The 

Xg axis, i.e. the Cg axis of Cg, in parameter space, corresponds to all molecules 

with Dgh symmetry. 

The intersection seam is a curve in the three-dimensional coordinate 

space. Since it runs on potential energy surfaces, it too is invariant under the 
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operations of in the parameter space and it, too, can be generated in full 

after having found 1/6 of it. It also follows from this symmetry that such a 

seam must penetrate each of the symmetry planes of the Cg^ group in the 

parameter space at right angles. 

We shall display the intersection seam by exhibiting (i) a plot of its 

projection in the ^2)-plane inside the triangle of Figure 1, (ii) a plot 

graphing the variation of s=XgV3 along the just mentioned projection curve, 

and (iii) a plot of the intersection energy E along the same curve. By virtue 

of the discussed symmetry properties, the projection in the (E^, Çg) plane must 

perpendicularly cross the normals from the comers of the triangle in Figure 1 

onto the opposite sides, and the plots of s and E must have horizontal slopes 

at the points of crossing these Cg, restricted coordinate spaces. These 

symmetry properties apply regardless of whether the intersection seam is a 

closed or an open curve. 
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3. DETERMINATION OF THE SEAM 

3.1 Point to Point Extrapolation 

In the previous investigations [1], [2] we had established the 

intersection point in symmetry. Because of the three-fold symmetry of 

the PES, this result yields in fact three intersection points in the coordinate 

space which are shown in Figure 1 as I^, Ig, Ig. Also shown are the positions 

of the four minima Mq, M^, Mg, Mg. The Xg coordinates, which are not shown, 

are given by the scale parameters with the values 

S(II)= 2.456Â, S(Mo)=2.214Â, s(Mi)=2.412Â, M). 

We started the determination of the intersection seam at the point Ig, which 

has the coordinates 

x/°'=0, X2^°'=-0.392Â, Xg'°)=1.418Â. 

Since, as explained above, the seam must cross the Xg-Xg plane at a 

right angle, a reasonable first guess for the next point on the seam is 

Y (D-c Y ("-Y (0: V (0) 

and a reasonable search surface for the exact next seam point is the plane 

Xi'^'=8=constant. A search, to be described below, on this plane around the 

predicted guess yielded then the actual intersection point (x/^\ x^'", Xg^^^). 

Because of the symmetry of the seam with respect to the plane Xi=0, this 

calculation also yielded a third intersection point, namely: 
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Y (-!)_ p Y (-1)—y (1) Y (-l)-Y (1) 
Xj — fc, Xg —Xj , Xg —Xg . 

From here on, the initial guess for each additional seam point was 

determined by a quadratic extrapolation from the preceding three seam 

points. The coefficients a to f in the expressions 

Xg = a + bxi + cxj^^ 

X3 = d + exi + 

were determined by a fit to the points (n), (n-1), (n-2) of the seam and then 

used to predict the values of and for = x/"^ + e. The exact 

values of and were then again determined by searching for the 

intersection point in the plane + e = constant.. 

Approximately, the same value of about £=0.02Â was used for the 

increments at the various points unless difficulty was encountered. We were 

prepared to change the extrapolation variable from to some linear 

combination of x^, Xg, Xg, and, correspondingly, the choice of the search plane, 

in case that the intersection seam should curve away significantly from the x^ 

direction. Such a change proved however unnecessary because the seam was 

found to stay remarkably close to parallel to the x^ axis. 

While the initial point of the seam corresponds to a molecule with Cg, 

symmetry, the molecular symmetry is lowered to for the new points on the 

seam so that the calculations involve more work. However, after having 

passed through the shaded region of Figure 1, the seam reaches again a point 



www.manaraa.com

168 

where the molecule has symmetry. This endpoint can therefore be 

rechecked by an independent calculation using Cgy symmetry. 

3.2 Planar Search by Minimizing (Eg-Ei)^ 

Because of the conical nature of the intersection [3], the difference 

between the two potential energy surfaces, (Eg-Ei), cannot be fit by a 

quadratic, but its square, (AEf, can. We therefore calculated E^ and Eg on 

each plane XI=constant for a grid around the initial guess, fit a quadratic to 

the (AE)^ values on this grid, determined the minimum, recalculated E^ and 

Eg on a finer grid around this minimum, and proceeded in the same manner 

until the energy separation at the minimum was reduced to less then half a 

microhartree. 

This procedure, which is analogous to the one used in our previous 

work [1] to detennine the initial point I3, proved quite straightforward. It is 

not overly efficient regarding the number of energy calculations needed and 

could be considerably improved by using a quasi-Newton procedure with the 

analytical gradients VCEj-Eg)'^ = 2(Ei-E2)(VEi-VE2). Such algorithms have 

been employed by Yarkony [8]. However, the procedure cannot prove 

conclusively that the two surfaces, in fact, do become exactly degenerate. 

This shortcoming is overcome by the following method which has not been 

used previously. 
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3.3 Corralling an Intersection Point 

According to the phase theorem of Herzberg-Longuet-Higgins-Berry [3], 

both wavefunctions % and % change sign when deformed continuously on a 

closed path looping around an intersection. In our previous investigation [1], 

we used this theorem as a test to prove the existence of a true intersection 

between the two l^A^ states in Cg^: if there were no true intersection, neither 

function would change sign. We shall now show how this approach can be 

adapted for the accurate determination of the location of an intersection once 

its approximate position is known. 

An obvious approach is as follows. First, calculate % and % on a 

closed path around the suspected point of intersection. If the wavefunctions 

do not change sign, find another guess at the intersection until the 

wavefunctions do change sign. Next calculate % and % along a line 

connecting opposite sides of the loop, thereby in effect creating two loops each 

containing about half the area of the original loop, One of the two loops 

created will contain the intersection and, hence, exhibit the sign changes in 

% and \|/2. The other will not. Then, proceed to cut the loop with the 

intersection in half and repeat the procedure. Successive repetitions of this 

bisection will decrease the size of the loops until the desired accuracy is 

reached. 

This approach can, however, be considerably refined by a closer 
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analysis of the phase change. It is known [3] that the adiabatic states \i/i, % 

can be expressed in terms of two diabatic states (!)i, (j)2 by the orthogonal 

transformation 

Vi = <|)iCos(cc/2) + (j)2sin(a/2) 
(6) 

\|A2 = -<j)iSin(cx/2) + (t)2C0s(a/2) 

where the angle a is obtained from the diabatic matrix elements = 

4|)ilHl(|)j) and AH = by the equations 

cos(a) = (?) 

sin(a) = (8) 

An intersection occurs when AH and H^g both change signs [3]. Figure 2 

exhibits a schematic diagram of the coordinate space near an intersection. 

The difference AH changes sign along the curve AH=0, the off-diagonal 

element H^g changes sign along the curve Hi2=0. Also shown is a closed path 

looping around the intersection of these two curves, which is, in fact, the 

point of degeneracy between the two energy surfaces. 

It is known that, in regions I and II, the diabatic state dominates in 

and the diabatic state (j)2 dominates in whereas the reverse is true in 

regions III and IV. (Concomitantly AH=0 is a line of avoided crossings, 

except that at the intersection one has a real crossing). Consequently, and in 

agreement with Eq. (7), one observes a changeover in the dominant 

configurations in \j/i and in % along the closed path whenever it crosses the 

curve Aff=0. On the other hand, it follows from Eq. (8) that sina will change 
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sign whenever changes sign. It follows then from Eq. (6) that the small 

coefficients in the adiabatic states, i.e. those which are not dominant in 

and Xf2, change sign where changes sign. We have observed these 

connections explicitly in a previous paper [1]. 

By virtue of these relationships, the overall sign change in the 

wavefimction Yi, say, comes about as a result of the individual changes 

illustrated in the following scheme: 

Region I Region H Region HI Region IV Region I 

Coeffs. of 

4)i in Vi 
Large Large Small -Small -Large 

Coeffs. of 

(j)2in 

1 

Small -Small -Large -Large -Small 

HI2=0 AH=0 HI2=0 AH=0 

By carefully monitoring the major and the minor configurations, it is 

therefore be possible to obtain an approximate idea where the loop around 

the intersection crosses the lines AH=0 and Hi2=0. The intersection of the 

lines connecting these opposite points on the loop will then yield an 

approximation to the intersection. 

The case at hand is a particularly favorable one, since èi and if2 

contain doubly occupied dominant configurations so that the sign changes of 
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the diabatic as well as the adiabatic wavefiinctions are identical with the sign 

changes in the coefficients of these configurations [1] and, hence, are easy to 

spot. 

The method is illustrated in Figure 3 for the determination of the 

intersection point in Cgv symmetry. The left hand panels of each figure 

display increasingly smaller paths in coordinate space looping around the 

intersection point in Cg, symmetry. The coordinates in the upper left hand 

panel of Figure 3a are the cartesian x,y internal coordinates used previously 

(Figure 3 of reference [1]), while the coordinates on the other two left hand 

panels on Figure 3a have been rotated by 31°. The coordinates of the top left 

panel of Figure 3b have been rotated by 32° and the other two panels at left 

were rotated by 33°. The solid dots in each left hand panel mark the points 

on the loops where the wavefiinctions were calculated. The right hand panels 

show the magnitudes of the coefficients of the three configurations which are 

dominant in one state or the other, calculated at the points marked at left. 

The abscissa of each panel at right simply numbers the points on the 

corresponding panel at left sequentially. The points where the loop crosses 

the line AH=0 can be identified as the regions where the large coefficients 

exchange dominance with the small ones and the crossing of the loop with 

the line Hi2=0 occurs where the small coefficients change sign. The 

boundaries of these crossings are marked by pairs of small tick marks on the 
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abscissas of the right panels (with generous room for error). The numbered 

points on the left panels correspond to these tick marks. These points, on 

opposite parts of the loop, are connected by straight lines. The lines going 

more or less vertically are expected to bracket the curve AH=0 whereas the 

lines going more or less horizontally are expected to bracket the curve H^2=0. 

Guided by these lines, the comers for a smaller loop are estimated and 

indicated by letters inside each panel. These letters appear then at the 

comers of the loop on the next panel. In 6 iterations, the loop has been 

reduced from a 0.2Âx0.2Â box to a 0.0004Âx0.00003Â box (in the rotated 

coordinates), whereas, using the divide-by-2 method, six iterations would only 

reduce the size of the box to 0.2/2®=0.00625Â. There exist various ways in 

which the convergence of this procedure could be accelerated. 
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4. THE INTERSECTION SEAM OF THE l^A' AND THE 2^A' STATES 

4.1 Ab-initio Procedure 

The full intersection seam of the two lowest ^A' states of ozone in 

symmetry was determined using a two-state-averaged FORS wavefunctions, 

with the active space consisting of all 2p orbitals on all three oxygen atoms, 

giving 1292 configurations of symmetry Cg. The two states were given equal 

weight in the averaging procedure. The basis set was of the generally-

contracted double-zeta type, viz. (Ils6pld/3s2pld). The s and p exponents 

were taken from Dunning's VQZ basis set [9]. The Is, 2s, and 2p 

contractions were the SCF orbitals, while the 3s and 3p orbitals were simply 

the most diffuse gaussians of each set. The d orbital set had an exponent of 

1.185, the one used by Dunning in his VDZ basis set. All calculations were 

made with the program MOLPRO of Werner and Knowles [10]. 

4.2 The Intersection Seam in C, Symmetry 

The intersection seam is depicted in Figures 4 and 5. Figure 4 

displays the projection of the seam path on the plane of the shape coordinate 

^2- Figure 5 shows the variation along the seam for the molecular 

circumference (r) which is related to Xg according to Eqs. (1) and (5). The 

points A through C on Figure 4 are the imiquely calculated points, the rest of 
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the seam was generated by symmetry. The point marked C is the actual 

starting point in the calculations. It is the location of the previously reported 

intersection point I3 in Cjv symmetry, very near the transition point between 

the two minima on the lower surface (marked Mq and in the figure). It is 

apparent from Figure 4 that the seam is a closed path. It intersects each of 

the three Cgy lines in two points: The points C, F, H are the originally known 

points II, I2,13; the points A, E, G are the new points. Figure 6 illustrates 

the variation of the molecular shape along the seam path. Point C is in the 

center, with the 116° apex angle of the isosceles molecules at the top. As the 

molecule moves along the path toward point A the top atom moves down and 

to the right, closing in on the lower right hand atom until a new axis 

appears, now bisecting the two atoms at right. Table 2 Hsts the bond lengths 

for the points M, C, and A. Because of the very short bondlength of rjs at 

point A and the correspondingly small bond angle at atom 1 (about 35°), the 

Table 2. Bond Lengths of Ozone at Various Geometries 

ri3 ^23 ri2 

Point M 1.305 1.305 2.214 

Point C 1.477 1.477 1.957 

Point A 1.563 0.940 1.563 
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molecule is obviously very unstable at this geometry. The energy along the 

seam is displayed in Figure 7. It confirms that the Cg, intersections A, E, G 

lie in a highly repulsive region of the PES. The repulsive character in the 

region of point A is also illustrated by Figure 8 which shows a projection of 

the intersection seam on the PES contour map for the circumference r=4.6Â, 

which is about midway on the seam. Even for this constant value of r, the 

energy difference between the two different Cg, points is about 2.2eV. 

Because of the variation in r, shown in Figure 5, the difference between 

points A and C in Figure 7 is in fact about 12eV. 

The points at which the intersection seam is actually determined are 

marked by dots on the abscissa of Figure 7. 

4.3 The Intersection Seam in Cg, Symmetry 

In Cg symmetry there are two irreps: A' (symmetric with respect to 

the molecular plane) and A" (antisymmetric with respect to the molecular 

plane). The two irreps of Cg,, labelled A^ and Bg are compatible with the A' 

irrep of Cg while the Ag and B^ irreps of Cgy correspond to the A" irrep on 

Ca- Since the original crossing at point C, in Cgy symmetry, was between the 

l^Ai and 2^Ai states, these two states become the states l^A' and 2^A' when 

the seam enters Cg symmetry. However, upon return to Cgy symmetiy at 

point A, only one of the two states is found to return to the other turns out 
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to become At this point A, the intersection is thus not between two 

states of like symmetry, but between two states of different symmetry. 

Because the off-diagonal element between the diabatic states 

vanishes automatically between two such states, there exists only one 

crossing condition, namely AH=0 (see text after Eq (8) above). Since the 

restricted molecule has two degrees of freedom, the intersection subspace 

between ^A^ and in Cgv is therefore of dimension 2-1=1 (see reference [3]). 

Hence, there exists another one-dimensional intersection seam between the 

states we are considering, one which is constrained to lie entirely in and 

which also passes through point A. The seam in Cg which was displayed in 

Figure 4 must then connect with this Cg, constrained seam at right angles at 

point A. This is confirmed by Figure 9 which shows contours of the energy 

difference between the l^A^ and the l^Bj states in the Cgv plane near point A. 

The dashed contours indicate where l^Bg is lower in energy and the solid 

contours indicate where l^A^ is lower. The soHd line is the intersection seam 

between the two states in Cg^. The large dot marks the point A where the 

intersection seam, which we determined in Cg, extrapolates to the Cg, 

coordinate plane. It is seen to fall exactly on the independently determined 

^Aj-^Bi intersection seam. 

It is obvious that entirely equivalent situations must exist in the other 

two Cgy restricted coordinate spaces which are obtained through rotations by 
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±120° around the Xg axis. We have not explored the full extent of the 

intersection seam between the l^A^ and l^Bg states since is lies in a 

dynamically rather inaccessible region of the Cgv coordinate space. Two 

possibilities for these additional seams are schematically sketched in Figure 

10, an open seam and a closed seam. This figure displays all four branches 

of the entire seam: The branch in is denoted by Sq, the three Cgv branches 

are denoted by S^, Sg, S3. 

4.4 Orbital Interpretation of the Symmetry Change 

The symmetry change of one of the two states from Aj at point A of 

Figure 4 to Bg at point C can be understood by the following reasoning in 

terms of orbital stabilities. 

In Cg, the FORS wavefunction is constructed from 12 c-type MO's, 

belonging to the irrep A' and 3 7t-type MO's, belonging to the irrep A". It is 

found that, along the entire seam and for both states, 9 natural orbitals of A' 

symmetry (three core and six valence orbitals) maintain near-constant double 

occupancy, whereas two natural orbitals of this symmetry remain effectively 

empty throughout. In addition, one natural orbital of A" symmetry 

maintains near-double occupancy along the entire seam. This leaves three 

orbitals whose occupancies vary significantly in going fi-om point C to point 

A, namely 
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a = llOa'), Tti = I2a"), TCg = Ba") 

Figure 11 exhibits plots of the three orbitals for three points along the seam. 

The a orbitals are plotted in the molecular plane, the n orbitals are plotted in 

a plane above and parallel to the molecular plane. At further intermediate 

points, the analogous plots look similar. The orbital symmetries are also 

given in these plots. It may be noted that, because of a degeneracy in the 

occupation numbers in both states at point A (see below), the two tc orbitals 

can be arbitrarily superimposed and, thereby, two orbitals similar to those at 

the intermediate point can be generated. The orbitals plotted are the 

MCSCF optimized orbitals. 

In Figure 12, we show the variations of natural orbitals (which are 

almost identical with the plotted MCSCF optimized orbitals) along the seam 

in going from point C to point A. The label INT indicates the point on the 

seam to which the intermediate orbitals of Figure 11 belong. The solid lines 

represent the occupations of state 1, the dashed lines those of state 2. As 

was mentioned earher, the calculated states are not exactly degenerate, but 

differ by about 0.5 microhartree. This difference is sufficient to maintain the 

character of the two wavefunctions so that the orbital occupations do follow 

non-erratic, continuous curves. We denote the lower state as "state 1" and 

the higher state as "state 2". 

For state 1, one recognizes the following occupation changes. In going 
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from point C to point A, the orbitals and 1I2 each lose one electron and both 

electrons go into the orbital a. The presumed reason is that a manifestly 

changes from an antibonding to a bonding orbital whereas the Jtg set 

changes from slightly anti-bonding to more strongly anti-bonding. State 2 

exhibits a compensating charge shift in the opposite direction which is 

attributable to the maintenance of orthogonality between the two states. 

The dominant configuration of both states are listed in Table 3. It is 

Table 3. Dominant configurations of the l^A' and 2^A' states 

Point C Point A 

Configuration State 1 State 2 State 1 State 2 

(core) o°îti^JC2^ -0.85 -0.02 -0.16 0.93 

(core) 0^7:1^712° 0.01 0.75 0.00 0.00 

(core) 0.04 -0.54 0.00 0.00 

(core)* 0.41 0.00 0.00 0.00 

(core) 0.00 0.00 0.91 0.16 

(core) = eleven doubly occupied cj-type orbitals and one doubly occupied 
Ji-type orbital. 
(core)* = ten doubly occupied <j-type orbitals and one doubly occupied n-
type orbital. 

seen that the single occupation of orbitals and in state 1 at point A 

result from a configuration in which both these orbitals are singly occupied so 

that the wavefunction of state 1 belongs indeed to the Irrep A^QB^ = Bg. At 

point C it manifestly belongs to the irrep Aj. State 2, however, has only 
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dominant configurations with doubly occupied orbitals throughout, so that it 

always belongs to the irrep Aj. 

4.5 Another Intersection Seam of the l^Aj state 

In the course of the present work, it was noticed that, in the 

restricted space near the point A, the state l^A^ comes very close to another 

^Ai state (3^A'). Minimization of AE^ and use of the phase-change theorem of 

Herzberg-Longuet-Higgins-Berry proved that these two states of like 

symmetry also intersect in symmetry. This point is marked with an 

asterisk in Figure 5. It lies approximately 25 millihartree higher in energy 

than the intersection point A. From the general dimensionality rules follows 

that there may exist another 1-dimensional intersection seam involving the 

l^A' state, leading into C, symmetry from this new intersection point. 
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5. CONCLUSIONS 

The intersection seam between the lowest two states of ozone has a 

multi-connected structure. It consists of four branches Sg, S^, Sg, S3 which 

are connected through four knots as illustrated in Figure 11. The knots and 

the three Cgv restricted branches S^, Sg, S3 lie, however, in a highly repulsive 

part of the potential energy surface. On the other hand, a large part of the 

branch Sq, in Cg symmetry, lies at relatively low energies and offers 

opportunities for radiationless transitions. The Sq branch cuts through Cg^ 

symmetry at two kinds of points. At the low energy Cg, points, both states 

have ^Aj symmetry but, at the high-energy Cg^ points (the knots), one state 

has ^Ai symmetry whereas the other has symmetry. This change is due 

to changes in orbital stabilities along the seam. 

Intersections with further surfaces exist. 

The method of "corralling an intersection", by identifying the curves on 

which the diabatic AH and vanish, through monitoring the sign and 

magnitude changes of the dominant coefficients of the adiabatic states, 

deserves further attention. 
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Figure 1. Parameter space of the scale-independent shape coordinates 
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Figure 4. Projection of the intersection seam onto the scale-independent 

shape coordinate space 
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Figure 5. Variation of molecular circumference along the seam 
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Figure 6. Variation of molecular shape along the seam 
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Figure 7. Variation of molecular energy of the l^A' and 2^A' states along 
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Figure 8. Projection of intersection seam onto contours of ground state for 

s=2.3 
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Figure 9. Contours of the energy difference [E(l^Bi)-E(l^Ai)] states in the 

Cgv restricted coordinate space near point A. Coordinates are x,y 

cartesian coordinates of end atom (see Figure 3 of reference [1]). 
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Figure 10. Two possibilities for the four branches of the intersection seam 

in the shape-scale coordinate space. Shaded planes: 

restricted spaces 
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Figure 11. Shapes of the three natural orbitals 

along seam from point C to point A 

a, TCj, and TCg, at three points 
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PAPER VI. GLOBAL POTENTIAL ENERGY SURFACES FOR 

THE LOWEST TWO 'A' STATES OF OZONE 
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ABSTRACT 

The global features of the potential energy surfaces of the lowest two 

^A' states of ozone have been established and detailed information has been 

determined for the critical regions. Contour maps are generated on a variety 

of planes and curved surfaces cutting through the two energy surfaces in 

various directions to obtain a full understanding of the three-dimensional 

characteristics of both surfaces. Perimetric internal coordinates are used so 

that the three atoms are treated on an equal footing. 

The l^A' state, the groundstate, has a ring minimum and three 

equivalent open minima, all in Cg^. Direct dissociation to Og+O is only 

possible from the open minima. The lowest energy path from the ring 

minimum first leads to an open Tm'm'Trmin before going to dissociation. The 

transition states between the ring minimum and the open minima also have 

Cgv symmetry. Close to these transition states lie the three open minima of 

the 2^A' state which has no ring Tm'm'mnm. Isomerization between the open 

minima is highly unlikely in the groundstate, but not entirely excluded in the 

excited state. Both states dissociate into the same state of Og+O, namely the 

groundstate whose energy lies between those of the open minima of the two 

O3 states. There exists an extended, interestingly shaped region in 

coordinate space in which the two states come very close to each other. 
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Indeed, it contedns an intersection seam between the two states which 

consists of four branches which are connected by three knots. Radiationless 

transitions between the two states can be expected. 
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1. INTRODUCTION 

Ozone has become particularly important because of its life protecting 

ultra-violet absorption in the upper atmosphere. But it has also attracted 

attention because of its toxicity in big-city smog and its potential as high-

energy-density material. Not too much is known, however, about even the 

lower potential energy surfaces of this molecule. 

The ground state equilibrium structure of ozone is an isosceles triangle 

with an apex angle of 113°. Since each of the three oxygen atoms can be at 

the apex, there are three equivalent such minima. Near each of these 

geometries, the molecule has four excited singlet states within about 6eV of 

the ground state energy. Under the restriction of symmetry (which is 

that of the groundstate minima) the excited states belong to the irreducible 

representations ^Bg. The groundstate belongs to When the 

molecule distorts to Cg symmetry, the A^ and Bg irreps become A' (symmetric 

with respect to the molecular plane) whereas Ag and become A" 

(antisymmetric with respect to the molecular plane). Upon removal of one 

oxygen, all of these states dissociate into two states of the Og+O system, 

namely [02(®2g") + 0(^P)] and [02(^Ag) + 0(^D)]. These relationships are 

schematically illustrated by the correlation diagram in Figure 1. It accounts 

for all three singlet states arising from the lowest dissociated configuration 
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(which also yields an equal number of triplet states and quintuplet states). 

The dissociated configuration [OgC^Ag) + 0(®P)], on the other hand, yields eight 

additional singlet states of Og, all at higher energies. 

Upon deformation of the molecule to an equilateral triangle, all singlet 

states become very high in energy, except one, a state (in labelling). 

This state in Dgj, symmetry is, of course, part of the groundstate potential 

energy surface (l^A^). It is in fact a fourth minimum on this surface. Its 

electronic structure is, however, related to that of the excited 2^Ai state at 

the groundstate minimum geometry. Indeed, we have shown in previous 

investigations [1] that these two ^A^ surfaces intersect each other in 

symmetry at a point very close to the transition state fi-om the ring minimum 

to the open minimum and that, in C, symmetry, the corresponding ^A' states 

intersect along a closed one-dimensional seam. Experimentally, nothing is 

known about the 2^Ai state [2]. 

In view of these findings, an elucidation of the PES of these two states, 

l^A' and 2^A', over larger regions of the internal coordinate space seemed to 

be called for. The present investigation contributes such a study. Our aim is 

twofold, namely to obtain a credible picture of the global features within a 

reasonable approximation and to obtain more accurate data for the critical 

regions. 
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The time seems ripe for in-depth global examinations of actual 

triatomic ab-initio potential energy surfaces. 
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2. METHOD 

2.1 Wavefunctions 

The quality of any calculation, i.e. the reliability of the theoretical 

predictions, depends on the quality of the determined wavefunctions. At this 

time, it is still necessary to strike a compromise between various competing 

desired objectives. In the present context, they are: (i) sufficient accuracy for 

credible experimental predictions, (ii) sufficient flexibility for an unbiased 

description in different regions of the global internal coordinate space, (iii) 

computational feasibility. Regarding the last objective, is has to be kept in 

mind that several hundred energy values may have to be determined on each 

two-dimensional cross section through the PES in order to obtain the global 

features, and that the clarification of the critical regions may increase the 

effort by a substantial additional fraction. In the present case, about 2000 

energies were determined on fifteen coordinate planes for both surfaces. 

Basis Sets 

Dunning's correlation-consistent VDZ (10s5pld/3s2pld) basis sets [3] 

were used for the three oxygen atoms. In section 3, we shall see that multi-

reference SDCI calculations yield reasonable values for the dissociation 

energies of Og-^Og+O and Og—>20 which are notorious for being difficult to 

reproduce. We therefore believe this basis to be capable of generating 
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credible results for the investigated potential energy surfaces. For higher 

excited states, complementation by diffuse orbitals will probably be called for. 

Configuration Space 

In order to guarantee the necessary flexibility over the various regions 

of the coordinate space we chose to determine the PES within the full-

valence-space-MCSCF approximation (FORS, Valence CASSCF [4]). For 

ozone, these waveftmctions contain 4067 CSFs in Cg, symmetry and 8027 

CSFs in Cg symmetry. Moreover, since two states of the same symmetiy are 

to be determined, the calculations were based on state-averaged energy 

minimizations (SA-FORS calculations), giving equal weights to both states 

and using the same orbitals for them. In section 3, we shall compare the 

results obtained from these waveftmctions with those of more elaborate 

waveftmctions. It will be seen that the FORS waveftmctions yield the energy 

differences between the ring minimum, the open minimum, and the 

transition states with sufficient accuracy to be able to provide a credible 

elucidation of the PES. 

The full valence space MCSCF wavefunction does not yield good 

quantitative values for the dissociation energies Og-^Og+O and 02->20 which, 

so far, have not been reproduced well with any medium size configuration 

expansion. The corresponding points require therefore correction along the 
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lines discussed in Section 3. We shall come back to this problem in future 

investigations. 

All calculations were performed with the MOLPRO program of Werner 

and Knowles [5]. 

2.2 Energy Surface in Coordinate Space 

In order to draw meaningful conclusions from energy surfaces, one 

requires internal coordinates which can be straightforwardly related to the 

molecular shape and an intelligible visualization of the surfaces in the 

internal coordinate space. 

Coordinate Space 

In order to obtain a presentation which exhibits the equivalent roles of 

the three nuclei, we chose perimetric coordinates, in particular, in scale-

shape-adapted form. We have defined these coordinates and described them 

in detail in a preceding paper [6] and it is therefore not necessary to discuss 

them again here. Figure 2 exhibits the x^-xg-plane of these coordinates, 

perpendicular to the Xg axis. In addition to the axes (x^xa), additional axes 

(x/^1 and (x/'jxg") are also indicated which are obtained from (x^xg) by 

rotations through +120° and -120° respectively. 

Since all three nuclei are identical, the PES have Cg, symmetry with 
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the Xg axis being the three-fold axis [6]. The entire PES can therefore be 

obtained from the section in the area that is shaded in Figure 2 (between the 

negative and the positive Xj" axes) by applying the symmetry operations of 

Cgy. Hence, energies have to be calculated only in one-sixth of the global 

internal coordinate space. 

In order to visualize the dependence on the three nuclear positions 

equivalently, we decided to determine cross-sections through the PES on 

planes Xgss/VS = r/(2V3) = constant (corresponding to molecules with fixed 

circumference) which cover the region of interest. Calculations were made on 

fifteen such planes defined by the values of r going from 4Â to 6.8Â in steps 

of 0.2Â. The relation of these values to relevant molecular conformations is 

seen from Table 1. The fifteen coordinate planes correspond thus to the s-

values s = 2(0.1) 3.4 Â. (2.1) 

Table 1. Molecular circumference (Â) for some geometries of Og 

Conformation ri2 ri3 ^23 r 

Ground State 
Open Minimum 2.214 1.305 1.305 4.824 

Ground State 
Ring Minimum 1.476 1.476 1.476 4.428 

Transition State 
between the above 1.916 1.438 1.438 4.792 

(Og+O) in Cg, 1.208^ 2.796 2.796 6.800 

^equihbrium bondlength of Og. 
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Four of these planes are illustrated on Figure 3 with respect to the 

perimetric coordinates s^, Sg, Sg. 

On each of the fifteen planes, energies were calculated on a grid of 

points located at distances of O.IA in each direction - and confined to the 

unique shaded area indicated on Figure 2. Only few calculations were made, 

however, in the comers of the coordinate triangles where two atoms approach 

each other closer than about 80% of the Og bondlength (=0.96Â) and the 

energy becomes correspondingly high. The larger the value s=const, the 

smaller is, of course, the fi'action of the entire coordinate triangle taken up by 

these difficult-to-access comers. The number of points at which energies 

were calculated varied firom 55 for s=2Â to 158 for s=3.4Â. Approximately 

1500 energies were determined in total for this global scan. The closer 

examination of the various critical regions required energies at about an 

additional 500 points. 

Interpolation 

Interpolation of the calculated energy values is a necessity for the 

graphical depiction and analysis of the PES. There are at least two essential 

reasons for this. One is the preparation of energy contours in a coordinate 

plane. Contouring algorithms are routinely predicated upon the function 

values to be plotted being offered on a rectangular grid which is equidistant 
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along each coordinate axis. Moreover, in order to obtain good, smooth 

contours, the grid has to be quite a bit denser than the pristine grid 

mentioned above on which energies were actually evaluated. The contouring 

grid has therefore to be derived from the pristine grid by interpolation. 

Another need for interpolation arises when one wishes to determine energy 

values and contours on planes or surfaces other than Xg=constant. Such a 

change in the viewing directions is an important tool for fully visualizing the 

three-dimensional behavior of a PES. To cut across the PES at various 

inclinations and with various origin displacements appears to be the only 

way to gain a complete understanding of the global character of a PES. 

(Only limited insight can be obtained by generating three dimensional energy 

contour surfaces perspectively). In fact, it is for this reason that energies 

were calculated on 15 planes Xg=constant, so that a grid with elementary 

displacements of O.IA was available for interpolation in all three coordinate 

directions. 

The triangular coordinate space covered by the coordinates (x^xg) 

terminates along the sides of the triangles as shown in Figures 2 and 3 and 

the problem arises how to interpolate successfully near these borders. This 

task was accomplished by extending the pristine data beyond these borders 

through reflections into additional neighboring triangle spaces, as explained 

in [6]. Interpolation and contouring was then performed over the entire 
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enlarged region. Only the central part of this larger contour map, covering 

the original coordinate triangle, was then used and is displayed in the figures 

of this paper. 

Bivariate interpolation techniques are still evolving and an ideal 

"method for all seasons" is still outstanding [7]. Different methods are useful 

under different conditions. If the pristine data are given on a rectangular 

grid that is equidistant in each coordinate direction, then cubic B-spline 

procedures are applicable and usually do a fine job [8]. This is useful for 

limited areas of the coordinate space. However, since we obtain data points 

in the full coordinate space by means of the Cg, operations, applied to one 

sixth of the data, we do not have such a grid for the global coordinate space. 

Moreover, it is often desirable to augment the original data set by additional 

denser grids in critical regions of the PES. For a pristine data set of this 

kind, one must use "scattered data interpolation" methods [9] which are still 

topics of research. We have used several methods: a triangulation method 

by Akima [10] and two methods based on the weighted superposition of local 

interpolation functions, one based upon the method of Shepard [11], another 

by Franke [12]. The performance of the various procedures depended upon 

the distribution and the homogeneity of the data. 

The bivariate interpolation methods rarely reproduced the exact 

pristine data and, not infrequently, had problems in generating smoothly 
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curved contours when plotted. It must however be acknowledged that 

quantum chemical potential energy surfaces have a tendency to change their 

geometric characteristics veiy rapidly in the regions of greatest interest and 

are therefore not easy objects for interpolation. The development of bivariate 

and, subsequently, multi-variate interpolation algorithms optimally suited for 

molecular potential energy surfaces would seem to be a subject deserving 

further investigative attention. 
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3. CRITICAL FEATURES OF THE POTENTIAL ENERGY SURFACES 

Before proceeding to a close global examination of the PES of the l^A' 

and 2^A' states, it is expedient to discuss the critical features of the two 

surfaces found by our calculations. 

The groundstate l^A' has four minima: three open minima, each of Cgy 

symmetry and belonging to the ^A^ irrep, with the apex angle of 116° located 

at one of the three oxygen nuclei, and one ring minimum with Dg^ symmetry. 

To each of the open minima, there leads a transition state from the ring 

minimum, with an apex angle of about 85°. Near each of these transition 

states, the excited 2^Ai state has a minimum and, in the immediate vicinity, 

is part of an intersection seam in C, symmetry. The groundstate dissociation 

can occur along six pathways, two from each of the open minima, with one of 

the end atoms moving away under approximate preservation of the apex 

angle. The dissociation from an excited state minimum occurs in a somewhat 

similar fashion. Both, the l^A' and the 2^A' states, have the same 

dissociation limit [OgC^Sg") + 0(®P)] (see Figure 1) whose energy lies between 

those of the l^A' and the 2^A' minima. There exists therefore, a barrier 

along the dissociation path on the 2^A' surface. The calculations also reveal 

a barrier to dissociation on the l^A' surface. This, we feel, is an artifact of 

the calculations, and will be elaborated below. 
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These energetic relationships are represented quantitatively in Figure 

4. Figure 4a exhibits the results of Internally Contracted Multi-Reference 

Singles and Doubles CI (ICMRSDCI) calculations where the FORS space was 

complemented by all internally contracted single and double excitations 

within the (3s2pld) basis mentioned in Section 2.1 [13]. This configuration 

space is of dimension 446,977 (the dimension of the uncontracted SDCI space 

is about 21x10®). Figure 4b exhibits the analogous energetic results from the 

full Valence State MCSCF (FORS) calculations. The full quantitative data of 

the various calculations are Hsted in Table 2. Table 3 Hsts the parameters of 

the various optimized geometries. 

It is seen from Table 2 and Figure 4 that the energy differences 

between the groundstate minima and the transition state between them are 

reproduced equally well by both the FORS wavefunctions and the ICMRSDCI 

waveftmctions. However, the dissociation energy of the FORS wavefunction 

is only 20% of the experimental value, compared to the ICMRSDCI value 

that is 60% experiment. While the ICMRSDCI value may appear to be less 

than satisfactory, it should be noted that a much larger ICMRSDCI 

calculation involving 165 orbitals and almost 3 million contracted 

configurations generates a dissociation value that is still only 88% of the 

experimental value [14]. 
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Table 2. Comparison of ground state energy differences obtained from 

various configurational approximations®. 

Ring R-0 (O2+C) Dissoc TS" 20 
TS" - -

Open - Open (O2+O) 0% 
Ring 

FORS 

SA FORS 

ICMRSDCI*^ 

SA ICMRSDCr 

Experiment 

51.03 33.82 8.46 13.46 141.66 

50.64 31.09 

52.84 33.73 24.83 4.98 165.06 

52.69 35.26 

41.43 41.43 191.65 

ICMRSDCI 
-FORS 

SA ICMRSDCI 
- SA FORS 

1.81 -0.08 16.37 16.37 23.40 

2.05 4.18 

FORS 
- SA FORS 

ICMRSDCI 
- SA ICMRSDCI 

0.39 2.73 

0.15 -1.53 

"All energies in millihartree. 1 millihartree=0.6kcal/mol. 

''Ring-opening transition state. 

Tialculated transition state to dissociation. 

''ICMRSDCI wavefunction using FORS reference and FORS optimized 

orbitals. 

®ICMRSDCI wavefimction using FORS reference and SA-FORS optimized 

orbitals. 
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Table 3. Geometry parameters of critical points of the ground state of 

ozone* 

O-O Bond Length 0-0-0 angle 

Open Min. 1.298Â 116.32° 

Ring-opening T.S. 1.43 lA 83.86° 

Ring Min. 1.470Â 60.0° 

Dissociation T.S. 1.211Â, 1.720Â 113.59° 

O2 1.2075Â -

®A11 critical points except the dissociation transition state possess 

symmetry. 

As mentioned earlier, the FORS wavefunction yields a barrier to 

dissociation on the l^A' surface. However, an ICMRSDCI calculation at this 

FORS determined geometry, which is likely to be different from the 

ICMRSDCI transition state geometry (if there is a transition state this 

surface), yields a much smaller barrier. We believe, therefore, that further 

examination at this or a slightly higher level of theoiy will reveal no barrier 

to dissociation on the l^A'surface. 
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4. GLOBAL FEATURES OF THE l^A' AND THE 2^A' 

POTENTIAL ENERGY SURFACES 

As mentioned in Section 2,2, energies of the two states were calculated 

on the fifteen planes s=X3/V3 = r/2 = 2.0(0.1)3.4 in the perimetric coordinate 

space, four of which were shown in Figure 2b. 

4.1 PES of the l^A'state 

Minima and Transition State 

Contours of the lower state l^A' on twelve of the above mentioned 

planes are exhibited in Figure 5. All features of this PES can be deduced 

firom the following markings. Since the global (open) minima are reached for 

8=2.412A, they are indicated on the panel for s=2.4Â. Their energy is Eo=-

224.501h. All contours on all panels correspond to energy values Eo+kx20mh 

(k=integer, 20mh=0.54eV=12kcaI/mol). They can be related to each other by 

reference to the bold contours which correspond to the energy Eg+GOmh on all 

panels. The shaded areas denote regions within which the energy goes 

downhill to local minima on that panel ("basins") and all contours which are 

boundaries of basins have the same energy value on any one panel. The 

energy values go up for the contours in the unshaded regions. No contours 

are drawn for energy values larger than Eo+200mh since they are getting too 

dense. This occurs when two atoms get substantially closer to each other 
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than the equilibrium distance of 1.21Â. These regions are indicated as 

dotted areas on all panels. 

It is seen that, for s values <2.5Â, each PES cross-section has one ring 

minimum in the center, three equivalent open minima, and three 

saddlepoints leading from the ring minimum to the open minima. The 

minimum (as a function of s) of each of the three open minima occurs for 

s=2.412A with an energy of E=Eo; they represent the equivalent global 

equilibrium structures. The minimum of the ring minima (as a function of s) 

occurs for s=2.214Â with an energy of E=Eo+51mh; it is the metastable ring 

equilibrium structure. The minima of the saddlepoints occur for s=2.396Â 

with an energy of E=Eo+82mh; they are the transition states from the ring 

structure to the open structures. For a value of s between 2.5Â and 2.6Â, the 

ring minimum disappears and, for all larger s values, the PES has a dome in 

the center region. 

Dissociation 

At about s=2.6Â, one can see the onset of dissociation: each of the open 

minima splits into two, moving away from the original Cg, position, under 

approximate preservation of the apex angle (See Figure 6 of reference 6). For 

large s values, the dissociated system [(O^^corresponds to the line 

%2 = (-Si-S2+2S3)/V/6" = s\/^ -
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where r^g = RCOg) = 1.21Â. For s=3.4A, this yields X2=1.29Â which is not too 

different from the minima on the panel for s=3.4Â. A counting of contours on 

panels s=-2.6Â to 3.0Â reveals the existence of a barrier with respect to 

dissociation on this surface, at about s=2.7Â with a barrier height of about 

16mh. This is in agreement with diagram B on Figure 4 and with Table 2. 

Most likely, this barrier is due to the failure of this wavefunction in 

predicting the dissociation energy Og-^Og+O correctly, as was discussed in 

Section 3. On Figure 4A and Table 2, we saw indeed that no barrier is found 

with the ICMRSDCI calculations. Nonetheless, the barrier found by the full 

valence MCSCF calculation is useful in that it provides a reasonable 

indication of the reaction path. 

A better view of this reaction channel is obtained by looking at the 

contours on a surface in coordinate space which approximately contains the 

dissociative reaction path. Such a surface is defined in Figure 6. Figure 6A 

shows the s^, s^ coordinates of several critical points of the l^A' surface in 

the Si-Sg coordinate plane. Namely: the (si,s2)-values for two open minima 

and the corresponding transition states, as well as the line Si+S2=R(02)=1.21Â 

for the dissociated system Og+O (with nucleus being removed). Figure 6A 

furthermore shows a parabola drawn in a least-mean-square fashion through 

these critical point projections. As a surface on which to plot PES contours, 

we now choose the parabolic cylinder section which is parallel to the Xg axis, 
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perpendicular to the x^-xg plane, and intersecting the X^-Xg plane in the just 

described parabola. Such a cylinder is shown in Figure 6B which also 

illustrates the intersection of this cylinder section with two planes 

s=constant. 

The contours of the l^A' PES on this cylinder section are shown on the 

upper panel of Figure 7. As on Figure 5, the bold lines indicate the contours 

Eo+60mh and the shaded areas indicate basins. The increment between 

contours is, however, only 5mh and the dotted area covers the region 

E>Eo+100mh. The intersections with four planes s=constant are indicated by 

dashed lines and the same intersection lines are shown on the smaller, lower 

panels, representing contours on corresponding planes s=constant taken from 

Figure 5. 

The dissociation channel from the two open minima are quite apparent. 

The most important inference from this plot is probably that there exists no 

realistic option of avoiding dissociation in favor of isomerization from one 

open minimum to another. 

Is dissociation from the ring minimum into Oj+O possible without 

passing through an open minimum"? 

The contours of Figure 5 are somewhat awkward for recognizing 

whether or not a direct dissociative reaction path exists from the ring 

minimum without first going to an open miniTmim, e.g. by abstraction of the 
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central oxygen. In order to answer this question, we determined PES 

contours on three planes containing the % axis, i.e. perpendicular to the 

planes s=constant. These planes, called A,B,C, are shown perspectively on 

Figure 8, where the axes (x^, Xg, x/, Xg', x^", Xg'') are those defined on Figure 

2. The PES contours on these planes are exhibited on Figure 9, where the 

markings have the same meanings as those on Figure 5. The panels A and C 

correspond to two different subspaces and, hence, show equivalent 

contours. On these two panels, one sees one of the open minima, the ring 

minimum and the saddlepoint between them. (This part of the plot is 

equivalent to Figure 4 of reference [la]). Comparison of panel C of Figure 9 

and panel s=2.4Â of Figure 5 at this saddlepoint, shows that the Cgv 

conserving normal mode pointing to the two minima is the only downhill 

mode in all three dimensions and that there exist two uphill normal modes, 

one Cgv conserving (on Figure 9) and another Cgv symmetry breaking (on 

Figure 5, panel s=2.4Â). This saddlepoint is therefore indeed a transition 

state. 

Figure 9C exhibits, however, another saddlepoint, namely towards 

positive Xg values, whose steepest descent line leads to a dissociation 

corresponding to abstraction of the central atom in a Cgy conserving subspace. 

In addition to this Cgv conserving downhill mode at this saddlepoint, which 

occurs at about s=2.6Â on Figure 9C, one finds however a second, 
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symmetry breaking, downhill mode, on the panel for s=2.6Â of Figure 5, 

heading towards two open minima. This saddlepoint is therefore not a 

transition state. Moreover, it is almost 20mh higher than the transition 

states towards the open minima. One must therefore conclude that most 

reaction trajectories which might start out towards a Cgv conserving 

abstraction of a central oxygen will turn around and end up in one of the 

open minima. Hence, dissociation from the ring structure goes through one 

of the open minima. 

The contours on panel B of Figure 9 are intermediate between panels A 

and C. They give an indication how these contours deform into each other if 

one slowly rotates the plotting plane around the Xg axis from A to C. The 

saddlepoints on plane B of Figure 9 are not saddle points on Figure 5. 

Linear Structures 

Linear arrangements of the three atoms correspond to the sides of the 

coordinate triangles of Figure 5. It is seen that, for s<2.6A, the isosceles 

linear structure, corresponding to the midpoints of the triangle sides, are the 

ones with the lowest energies and represent saddlepoints with respect to 

inversion of the molecule under constant circumference. For panels with 

s>3Â, where we approach dissociation, the lowest energy occurs for two atoms 

at the Og equilibrium distance and the third, collinearly, a long distance 
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away. 

On Figure 9, the linear molecules are represented by the lines marked 

Si=0 (corresponding to lying between 0'^' and and $2=0 

(corresponding to lying between and 0'^'). Panels A and C are Cgv 

preserving planes and, therefore, the lines Si=0, S2=0 correspond to the 

isosceles linear molecules which, as noted above, are saddlepoints on the 

panels for s^.6Â on Figure 5. It is seen from Figures 9A,C that the 

saddlepoints with the lowest energy occur at about s=2.5Â. These points are 

therefore transition states with respect to inversion, with a barrier of about 

60-70mh and bond lengths of about 1.25Â. 

On the other hand, it is apparent from Figure 8 that the lines Si=0 and 

S2=0 on panel B correspond to linear molecules where the distances between 

the central atom and the two end atoms are in a ratio of 2:1. (See Section 4.2 

of reference [6]). When the shorter of these distances is equal to the Og 

bondlength of 1.21Â, then the larger one will be 2.42Â and s=half the 

circumference will be 3.63Â. It is apparent that the (extrapolated) minima 

on the lines Si=0 and 83=0 of panel B occur just about for this value of s. The 

similarity of these minima for large s values with those on panels A and C 

reflects the independence of the dissociated system upon the location of the 

oxygen atom. The near dissociation minimum on the lines Si=0 of panel B is 

reached from the global open minimum of panel A by a path penetrating 
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panels intermediate between A and B in agreement with the earlier 

discussion of this dissociation. 

4.2 PES of the 2^A'' State 

The contours of the 2^A' state on planes s=constant are displayed on 

Figure 10. The method of marking is the same as that for the l^A' state on 

Figure 5. In fact, the energy increment between contours (20mh) is the same 

on both figures and some contours on Figure 10 have the same energy as 

some contours on Figure 5. However, the bold contours on Figure 10 

correspond to the energy Eg+lOOmh, i.e., they are 40mh higher than the bold 

contours on Figure 5. Similarly the dotted region starts at a higher energy 

(Eo+500mh as compared to Eo+200mh in Figure 5). 

Minima 

On all panels s=2.0A to 2.7Â, the PES cross-sections exhibit three 

minima corresponding to open structures, i.e. obtuse molecular triangles. 

The minimum (as a function of s) of these minima occurs for s=2.421Â with 

an energy of Eo+82mh (Eq still denotes the energy of the global ground state 

minimum). These global minima of the 2^A' state are indicated on the panel 

for s=2.4Â. As mentioned earlier, their locations are very close to the 

groundstate transition states between the groundstate ring minimnm and 
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open minima. 

In contrast to the ground state, the 2^A' has no ring Tninlmnm^ its 

energy is quite high for conformations near the equilateral triangle structure. 

Dissociation 

On the panel s=2.4Â one notices the appearance of a second set of three 

minima, corresponding to acute molecular triangles with symmetry. 

These minima become more pronounced on the panels s=2.5Â and 2.6Â. The 

transition, on a panel s=const, from one of the previous minima (open 

triangle structures) to one of the presently considered minima (acute triangle 

structures) corresponds to a change in electronic structure. Indeed, for the 

acute triangle minima, the electronic wavefunction belongs to the irreducible 

representation With increasing values of s, corresponding to one oxygen 

further and further away from the Og left behind, these minima steadily 

decrease in energy and reach their lowest value for s=«>, where they end up 

with the same (Og+O) configuration as the groundstate (see Figure 1). (For 

s=3.4Â, this state is, however, less close to being a dissociated system than 

l^A' was, in as much as the minimum energies are not yet constant along 

lines parallel to the triangle sides.) The minima for the open triangle 

structure, on the other hand, become less and less deep with increasing s and 

finally disappear. Consequently, there exists a dissociation path from the 
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global minimum of the 2^A' PES for s=2.421Â to the near dissociated system 

for s=3.4Â. The transition state for this path occurs for s=2.6Â where the 

saddlepoint between the two types of minima (for s=const) reaches its 

minimum, with a barrier of (104nih-82mh)=22mh. 

Two successive enlargements of the panel for s=2.6 in the region around 

this transition state are shown on Figure 11, where the energy contour 

increments are Imh and 0.5mh respectively and the shadings indicate basins 

with energy values E^o+103mh. It can be seen that the two transition 

states lie within 0.2Â from each other. If both would move by 0.1Â towards 

each other, then they would coalesce into one, on the Xg axis with Cgv 

symmetry at the position marked by an asterisk on Figure 11, and it would 

become a transition state for isomerization between two equivalent minimum 

structures rather than for dissociation. It would seem that, even with the 

critical region as it is in Figure 11, there is some probabihty for the molecule 

to undergo isomerization from one open minimum to another when starting 

out on this reaction path. 

As in the case of the l^A' PES, this dissociation channel can be better 

recognized by contours on a parabolic cylinder perpendicular to the s^-sg 

plane. On Figure 6a, we also showed the Si,S2 coordinates of the critical 

points of the 2^A' state as well as a least mean squares parabola through 

these points. Again we consider contours on a parabolic cylinder, such as 
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shown m Figure 6B, but now intersecting the S^-Sg plane in the new parabola. 

It should be noted that, on it, the dissociated system has an Og bondlength of 

1.37Â, i.e. somewhat larger than the 0% equilibrium bondlength of 1.21Â. 

The contours on this cylinder section are displayed on Figure 12 where the 

markings are very similar to those on the analogous Figure 7 for the l^A' 

surface. The contours confirm that the two transition states are close to 

having the characteristics of one transition state in Cg, with a third downhill 

branch going off at a right angle toward the dissociated system. This latter, 

Cgv conserving, downhill steepest descent path originates on a ridge from the 

center of the coordinate plane (corresponding to the high-energy ring 

geometries) and changes into a valley very close to the aforementioned 

transition states. At this valley-ridge inflection point [15] the second 

derivative of the energy vanishes in the Cgv symmetry breaking direction. 

The actual downhill path in Cgv symmetry can be seen on panels A and 

C of Figure 13, which displays cross-sections of the 2^A' PES in the planes 

containing the Xg axis which were specified on Figure 8. The contours of 

Figure 13 are analogous to those shown on Figure 9 for the l^A' state and 

have similar markings. An entirely congruent Cg, preserving plane with 

identical contours would be the Xg-Xj plane. That plane intersects the 

cylinder section defined in Figure 6 (on which the contours of Figure 12 are 

plotted) in a line that is indicated as a dotted line on Figure 12. On the 
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conserving Xj-Xg plane, this intersection line is found to be 

s = 3(1.37/2) + = 2.055 + 1.225x2 (42) 

(See Eq. (15) of reference [6]) and the analogous line is shown as a dotted line 

on panel A of Figure 13. From Figure 11, one finds the coordinates 

= 0 ,  3 : 2  "  0 . 4 4 2 Â ,  s  =  ~  2 . 6 Â  ( 4 . 3 )  

for the point midway between the two transition states, which is marked by 

an asterisk on that Figure. The same point is also marked by asterisks on 

Figure 12 and on panel A of Figure 13. It can now be seen that the steepest 

descent reaction path from this point to dissociation on Figure 13 does not 

deviate too much from the cylinder constructed in Figure 6. 

Linear Structures 

An examination of the triangle sides on Figure 10 and of the lines Si=0 

and 82=0 on Figure 13 leads to conclusions regarding the linear structures of 

the 2^A' state which are similar to those found for the l^A' state. Namely, 

there exist linear isosceles transition states with respect to inversions from 

one minimuTTi to another at about s=2.8Â, corresponding to two equal bond 

lengths of 1.4Â, with a barrier of about 65mh. For large values of s (s>3Â), 

the minimum of the linear molecules corresponds to an oxygen molecule in 

its groundstate and an oxygen atom at a large distance. 
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4.3 Energy Difference Between the Two States 

We know from previous investigations [lb] that the l^A' state and the 

2^A' state intersect along a seam which forms a closed curve looping around 

the X3 axis in our coordinate system. We have also shown [la] that, at least 

in Cgv, the intersection is of the sloped type [16] and that the two surfaces 

seem to stay close to each other over a somewhat extended range near the Cgv 

intersection point. Since, in such regions, there exists a high probability for 

radiationless transitions, it is of interest to know the actual global extent of 

the part of coordinate space where the energy difference between the two 

states is small. 

Contours of the energy difference AE=[E(2^A')-E(1^A')] on panels 

s=constant are exhibited on Figure 14. Note that, here, the markings are 

very different from those on the analogous Figures 5 and 10 for the separate 

surfaces. Now, the light areas denote the regions of low AE values, namely 

AE<20mh. In this area, there can lie one more contour, namely AE=5mh. 

Shaded is the area where AE>20mh. The increment between contours is 

15mh. The bold contour corresponds to AE=95mh. The dotted comer regions 

correspond to molecular geometries where two oxygen atoms approach each 

other closer than 0.8A=66% of the Og bondlength, where the energies of both 

states become extremely high. 

An examination of all panels reveals that the shape of the region where 
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the two states come close remains remarkably similar for practically all 

values of s. In the three dimensional coordinate space, it represents a 

volume which is schematically drawn on Figure 15. It is approximately the 

volume between two cylinders with radii 0.4Â and 0.5Â, the Xg axis being the 

cylinder axis, and, joined to it, three sheet-like volumes within about 0.1-0.2Â 

of those sections of the three conserving planes which, starting at the 

aforementioned cylinder,go outward to the comers of the coordinate triangles. 

How the two states approach each other can be seen on Figure 16 which 

plots the energies of both states as functions of the radial distance 

= (r^+r^+r^)-(ri2+7-23+7-13)^/3 (4.4) 

where r^ are the molecular bondlengths (Eq. (4.4) follows from Eqs. (17), (3), 

and (15) of reference [6]). Plots are given for various values of the angle co, 

as explained in Figure 17a. It is seen that the radius of closest approach 

remains remarkably close to (x^^+xg^)^ = 0.4Â. 

From the exact points of closest approach we determined accurate 

functions (x^^+xg^)^^ = f((o) for various values of s, some of which are shown in 

Figure 17b. In Figure 18, we display the energies of the two states along 

these lines for various s-values. 

The intersecting seam between the two states, which was a partial 

stimulus for the present investigation, must lie in the volume of close 

approach depicted in Figure 15. In reference [lb] we determined explicitly 
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the intersection seam which loops around the Xg axis, i.e. which runs in the 

cylinder section of Figure 15. The exact points where this seam intersects 

various PES cross-sections discussed above are indicated by heavy dots on 

Figures 5,10,14,16,18. We had also found in reference [lb], however, that the 

intersection in fact consists of four connected branches Sq, S^, Sg, Sg. The 

branch Sg is the one just discussed which lies in the cylinder section of Figure 

15. In addition, there is one branch in each of the three Cg, conserving 

planes. These branches (S^, Sg, Sg) lie in the sheetlike volumes of Figure 15 

which are fanning out from the cylinder to the triangle comers (see Figure 10 

of reference [lb]). The somewhat surprising form of Figure 15 is thus 

confirmed by the results of reference [lb]. Finally, it was also found in 

reference [lb] that, on the branches Sj, Sg, Sg, the two states belong to 

different irreps of Cg^, namely and ^Bg, and this is presumably also the 

case for the entire sheet-like parts of Figure 15. 



www.manaraa.com

231 

5. CONCLUSIONS 

The global features of the potential energy surfaces and detailed 

information regarding their critical points have been established for the 

lowest two ^A" states of ozone. 

The ground state has a ring minimum and three equivalent open 

minima. A lowest-energy path leads from the ring minimum over a 

transition state to each open minimum and from there, under approximate 

preservation of the apex angle, to dissociation into Og+O. The excited state 

has three open minima, whose geometries are close to those of the 

aforementioned transition states between the ground state minima. 

Dissociation of the excited state follows similar paths as for the ground state. 

The path towards isomerization between the open minima would start out 

close to the dissociative path and then split off from it. This is highly 

unlikely on the ground state surface, but not entirely improbably on the 

excited state surface. Both states dissociate into the same state of Og+O, viz. 

the ground state, whose energy lies in between the energies of the open 

minima of the l^A' and 2^A' PES of O3. The excited state is therefore 

metastable with a dissociation barrier of about 13kca]/mol. The groundstate 

has no barrier towards dissociation. 

There exists an extended region in coordinate space, of a somewhat 
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peculiar shape, where the two states come very close. In fact, the two states 

intersect in this region along a seam which consists of four branches which 

are connected in three knots. Radiationless transitions can therefore be 

expected. 

For isosceles conformations with obtuse apex angles, both states belong 

to the same irreducible representation in C2V, viz. However, for isosceles 

conformations with veiy acute angles, the two states belong to different 

irreps, namely and A complete elucidation in Cg, requires therefore 

the simultaneous consideration of the three states l^A^, 2^Ai, and l^Bg, all of 

which become ^A'states when the symmetry is lowered to Cg. 



www.manaraa.com

233 

REFERENCES 

1. a. S. Xantheas, G. J. Atchity, S. T. Elbert, and K Ruedenberg, J. Chem. 

Phys., 94, 8054 (1991). 

b. G. Atchity and K. Ruedenberg, to be submitted. 

2. J. I. Steinfeld, S. M. Adîer-Golden, and J. W. Gallagher, J. Phys. Chem. 

Réf. Data (Am. Chem. Soc. and Am. Inst. Phys. for U. S. Nat. Bur. 

Standards), Vol. 16, No. 4, p. 911 (1987). 

3. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989). 

4. A good review of MCSCF methods is by R. Shepard in Ab Initio Methods 

in Quantum Chemistry-Il (John Wiley & Sons, Great Britain, 1978), pp. 

63-200. See also B. O. Roos, ibid, pp. 399-445. 

5. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985); Chem. 

Phys. Lett. 115, 259 (1985). 

6. G. Atchity and K. Ruedenberg, to be submitted. 

7. R. Franke and G. M. Nielson, in Scattered Data Interpolation and 

Applications: A Tutorial and Survey. 

8. C. de Boor, in A Practical Guide to Splines (Springer Verlag, New York, 

1978). 

9. R. Franke, Math. Comp. 38 181 (1982). 

10. H. Akima, Algorithm 526 in ACM TOMS, 4, 160 (1978). 



www.manaraa.com

I 

i 

234 

11. R. Renka, Algorithm 660 in ACM TOMS, 14, 149 (1988). 

12. R. Franke, Comp. Maths. Appls. 8, 273 (1982). 

13. H.-J. Werner and E. A. Reinsch, J. Chem. Phys, 76, 3144 (1982); 

H.-J. Werner, Adv. Chem. Phys. 59 1 (1987). 

14. G. J. Atchity and K. Rudenberg, to be submitted. 

15. P. Valtazanos and K. Ruedenberg, Theor. Chim. Acta 69 281 (1986). 

16. G. J. Atchity, S. S. Xantheas, and K Ruedenberg, J. Chem. Phys. 95, 

1862 (1991). 



www.manaraa.com

235 

0/Ap + 0('D) 

o/s; )+oep) 

0/Ap + 0('D) 

0/Z; ) + OfP) 

0, + 0 0,(CJ 03(C) 0, + 0 

Figure 1. Correlation of lowest singlet states of ozone 



www.manaraa.com

236 

Xj normal to paper 

// // 

Figure 2. Scale-shape adapted perimetric coordinates (XijXjjXg). Shaded 

area: region of independent energy values in ozone 
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S = S^+S^+S^ 

> s,(A) 

Figure 3. Four planes s=constant in the perimetric coordinate system. 

Shaded: s=2.0Â- Dotted: s=3.4Â 
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Figure 4. Critical energy differences for the and the 2^A' states of 

ozone. A: ICMRSDCI calculations. B; FORS calculations 
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S=2.1 
E„+100mh 

E„-i-60mh 

-1.0-0.5 0 0.5 1.0 -1.0-0.5 0 0.5 1.0 x(Â) 

1.5-1.0-0.5 0 0.5 1.0 1.5 -1.5-1.0 -0.5 0 0.5 1.0 1.5 x^CÂ) 

rio Ring opening T.S 

—— I ' I : I 1 ! 1 1 r 

1.5-1.0 -0.5 0 0.5 1.0 1.5 -1.5-1.0 -0.5 0 0.5 1.0 1.5 
x,(A) x,(A) 

Figure 5. l^A' state PES contours in planes normal to the Xg axis, a) 

s=2.0Â to s=2.5Â. Bold=Eo+60nih. Dotted>Eo+200mh. Shaded; 

basins. Increment=20mh 
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DisSOC. T.S. «=2.7 
Eg+lbmh 

-1.5-1.0-0.5 0 0.5 1.0 1.5 x(A) -1.5-1.0-0.5 0 0.5 1.0 1.5 

n r 
-1.5-1.0-0.5 0 0.5 1.0 1.5 

S=3-2 

-2.0-1.5-1.0-0.5 0 0.5 1.0 1.5 2.0 

Near-Dissociation. 
Eg+0.5mh 
O, bond =1.23 
O3-O dist. = 2.72 

S=3.4 

A X f x X t 

-2.0-1.5 -1.0-0.5 0^ 0.5 1.0 1.5 2.0 -2.0-1.5-1.0-0.5 0^ 0.5 1.0 1.5 2.0 
x,(Â) x,(Â) 

Figure 5. continued; b) s=2.6Â to s=3.4Â. Bold=Eo-(-60mh. 

Dotted>Eo+200mh. Shaded: basins. Increnient=20mh 
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A Projections onto the s,-Sj plane of the critical points on the 
dissociation paths of the 1 'A' and 2'A' PES and of the para­
bolic cylindar sections used for contours in Figs. 7 and 13 

liO-

Minunum 

Minimum 

0.75-

OiO-

025-

0.0-

Open Minim/^^\ l'A' 

T I I  I r  

.0 0.25 0.50 0.75 1.00 125 1.50 
s,(Â) 

B Cylinder section for 
PES plots in figures 7 and 13 

Intersection of cylinder 
I section with plane s=3.4A 

Plane s=3.4Â 

Intersection of cylinder 
section with plane s=2.2À 

Plane s=22Â 

>s,(A) 

Figure 6. Cylinder sections in perimetric coordinate space for dissociative 

contour plots considered in Figures 7 and 13 
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-.8 -.6 -.4 -.2 0 .2 .4 .6^ .8 
Path length along parabola in Xj-X^ pIane(Â) 

• -0.5 6 0.5 X.;  -0.5 0 0.5 

Figure 7. Contours of PES on cylinder defined in Figure 6 for this 

state. Upper panel: Dots Eo+lOOmh. Shaded: basins. 

Bold=Eo+60mh. Incr.=5mh. Lines of heavier dots: 

conserving. Lower panel: as in Figure 5 
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SjCA) 

A 

X^'-Xj plane: A 

Xj-Xj plane: B 

X^''-Xg plane: C 

•> s,(A) 

s=2.4A 
s=3.4A 

Figure 8. Planes axi+bx2=0 in perimetric coordinate space used for contour 

plots in Figure 9 



www.manaraa.com

244 

S (A) 

Ring min. 

Intersection 

Ring opening 
T.S. 

Open min. 

1 I r 
1.5 1.2 0.9 0.6 0.3 0.0 -0.3 -0.6 -0.9 -1.2 -1.5 x/(À) 

S (A) 

B 
— Ring min. 

I ' ' '"I" ' ' T ' "V" ' ' I 
-1.5 -1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2 1.5 Xj(À) 

S (A) 

C 

Open min. 

Intersection 

Ring opening 
T.S. 

Ring min. 

-1.5 -1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2 1.5 

Figure 9. l^A' state PES contours in planes containing the Xg axis, defined 

in Figure 8. Bold=Eo-H60mh. Dotted>EQ+200mh. Shaded: 

basins. Increinent=20nih 
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S=2.0 /ii!ihEo+220mh 

E.4-160mh 

-1.0-0.5 0 0.5 1.0 

120mh 

-1.0-0.5 0 0.5 1.0 x(A) 

S=2.2 

-1.5-1.0-0.5 0 0.5 1.0 1.5 -1.5-1.0-0.5 0 0.5 1.0 1.5 x CÂ) 

s=2.4 ^ 

-1.5-1.0-0.5 0 0.5 1.0 1.5 -1.5-1.0 -0.5 0 0.5 1.0 1.5 
x,(Â) X;(Â) 

Figure 10. 2^A' state PES contours in planes normal to the Xg axis, a) 

s=2.0Â to s=2.5Â. Bold=Eo+100mh. Dotted>Eo+500mh. Shaded: 

basins. Increinent=20nih 
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3=2.6 ^ , s=2.7 

-1.5-1.0-0.5 0 0.5 1.0 1.5 1.5-1.0-0.5 0 0.5 1.0 1.5 

s=2.8 

-2.0-1.5-1.0-0.5 0 0.5 1.0 1.5 2.0 

Near-Dissociation 

1.5-1.0-0.5 0 0.5 1.0 1.5 

S=3.4 E -K).5mh 
O, bond = 1.23 
O.-O dist. = 2.72 

S=3.2 

y X 

--1.0 
-1.0-

-2.0-1.5 -1.0 -0.5 0^ 0.5 1.0 1.5 2.0 
X,(Â) 

T 1 I I I I r 
-2.0-1.5-1.0 -0.5 0, 0.5 1.0 1.5 2.0 

X,(Â) 

FigTire 10. continued; b) s=2.6Â to s=3.4Â. Bold=Eo+100mIi. 

Dotted>Eo-f-500nih. Shaded: basins. Increment=20mh 
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.6 -

(N 
X 

.4^ 

0 -.4 -.3 -.2 .2 .3 .4 .1 .1 

x^(A) 

-.16 -.12 -.08 -.04 0 .04 .08 .12 .16 

x^(A) 

Figure 11. Enlargement of the 2^A' state PES near the dissociative 

transition state in the plane s=2.6Â- Lower panel: magnified, 

view of region inside rectangle in upper panel. Upper panel 

increment=2mh. Lower panel increments Imh. Shaded region: 

E<Eo+103mh 
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.8 -.6 -.4 -.2 0 .2 .4 .6 ^ .8 
Path length along pa&bola in x,-x^ pIane(Â) 

X,; -0.5 0 0.5 X;: -0.5 0 0.5 

Figure 12. Contours of 2^A' PES on cylinder defined in Figure 6 for this 

state. Upper panel: Dots;Eo+160nih. Shaded: basins. 

Bold=Eo+60mh. Increment=5mh. Lines of heavier dots: Cg^ 

conserving. Lower panel: as in Figure 10 
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s(/0 
Intersection 
Global min. 

"T i 1 i 1 1  ̂

1.5 1.2 0.9 0.6 0.3 0.0 -0.3 -0.6 -0.9 -1.2 -1.5 x/(À) 
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B 
1 1 1 1 1 1 1 1 r 
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S (A) 
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- Global min. 

-1.5 -1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2 1.5 x/'(A) 

Figure 13. 2^A' state PES contours in planes containing the Xg axis defined 

in Figure 8. Bold=EQ+100nih. Dotted>Eo+360nih. Shaded: 

basins. Increinent=20mh 
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1.0-0.5 0 0.5 1.0 1.0-0.5 0 0.5 1.0 x(Â) 

-1.5-1.0-0.5 0 0.5 1.0 1.5 -1.5-1.0 -0.5 0 0.5 1.0 1.5 

-1.5-1.0-0.5 0 0.5 l.O 1.5 -1.5-1.0-0.5 0 0.5 1.0 1.5 
X;(Â) Xj(Â) 

Figure 14. Contours of the energy differences between the l^A' PES and 

2^A' PES in planes normal to the Xg axis, a) s=2.0Â to s=2.5Â. 

Contours; Lowest=5mh. Increment=15mh. Bold=95mh. 

Shaded:>20inh. Dotted: one bond length<0.8Â 
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1.5-1.0-0.5 G 0.5 1.0 1.5 1.5 -1.0-0.5 0 0.5 1.0 1.5 

-2.0-1.5-1.0-0.5 G 0.5 1.0 1.5 2.0 -1.5-1.0-0.5 0 0.5 1.0 1.5 

S=3.4 8=3.2 

~r I • ' I I 1 
-2.0-1.5-1.0-0.5 0^ 0.5 1.0 1.5 2.0 -2.0-1.5-1.0-0.5 0^ 0.5 1.0 1.5 2.0 

x,(Â) 

Figure 14. continued; b) s=2.6Â to s=3.4Â. Contours: Lowest=5in]i. 

Increment=15mli. Bold=95mh. Shaded:>20iah. Dotted: one 

bond length<0.8Â 



www.manaraa.com

252 

Figure 15. Schematic diagram of the volume in the perimetric coordinate 

space along which the l^A'and 2^A' states are close to each 

other 
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s=2.0À 
s=2.3Â 
s=2.6Â 
s=3.4Â 
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x (̂Â) 

Figure 17. Curves of closest approach between l^A' and 2^A' states in the 

cylinder section. The curves are defined by (Xi^+X2^)^=a(s) + 

b(s)sin3(û + c(s)sin6cû + d(s) sin9co 
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SUMMARY AND CONCLUSIONS 

The first part of this dissertation dealt with strictly theoretical material 

necessary for an in-depth investigation of the two potential energy surfaces. 

It covered background material on intersections of potential energy surfaces, 

on the construction of diabatic states, and on the internal coordinates for 

triatomic molecules. 

Paper I presented a set of symmetric, perimetric, scale-shape internal 

coordinates for triatomic molecules. The perimetric coordinates of James and 

Coolidge, first used, the 1930's [4], are advantageous for use with triatomic 

molecules because they treat all three atoms equivalently. Each of these 

coordinates is a distance that varies from zero to infinity. This paper 

introduced shape-scale perimetric coordinates in which the size of the 

molecule is denned by one coordinate, and the shape by another pair of 

coordinates. In these coordinates, all molecules of constant size lie in the 

same angular parameter plane. The coordinates are particularly useful for 

the visualization of properties of triatomic molecules where many two 

dimensional contour maps can be generated in parallel planes containing 

molecules of constant size. Furthermore, the Cg^ symmetry exhibited by the 

PES and other properties of homonuclear triatomic molecules is particularly 

clearly displayed in these coordinates, a fact which is advantageous for the 
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study of the rearrangements of ozone. This paper also discussed in detail the 

relation between the scale-shape symmetiy coordinates and the molecular 

shape. 

Paper 11 provided the theoretical background necessary for 

understanding conical intersections. The "crossing conditions", Hj2=0 and 

AH=0, were derived and examined. The topography of the two crossing 

surfaces was examined in the neighborhood of the intersection. Within a 

certain domain, the dimensionality of the intersection crossing spcxe (ICS) 

was discussed and shown, in general, to be N-2 where N is the number of 

internal coordinates of the molecule. Within this ICS the two states in 

question are exactly degenerate. The two-dimensional branching space is the 

coordinate space in which the degeneracy between the two states is lifted. In 

the branching space, the two surfaces and Eg were shown to have the 

function form 

where E° is the intersection energy. These surfaces were illustrated and 

characterized for the entire range of parameters b^, bg, Cj, and Cg. The 

steepest descent lines of these surfaces were also discussed and 

characterized. It was noted that conical intersections are preferred locations 

for radiationless transitions from the higher state to the lower state, but that 

in some instances transitions from the lower state to the upper state are also 
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conceivable. 

Paper m presented a new method based on quantum chemical 

algorithms for the construction of diabatic states from adiabatic states. The 

method is founded on the idea that a diabatic state is dominated throughout 

coordinate space by a single set of configurations. The transformation to 

diabatic states is therefore derived by maximizing the contribution of these 

configurations to their respective states. 

The second part of the dissertation contained investigations of the two 

lowest ^A' potential energy surfaces of ozone. The intersection between them 

is covered in detail in the first of these papers. 

Paper IV applied the construction procedure of diabatic states, 

formulated in Paper m, to the two lowest states of ozone in Cg, 

symmetry. Careful examination of the configurational expansions of these 

two states yielded an understanding of the causes of the intersection between 

them. It was concluded that, in cases where the dominant configurations 

consist entirely of doubly occupied orbitals, an intersection between two 

states can occur only if each diabatic state consists of more than one 

dominant configuration, and if the weights of the dominant configurations in 

the diabatic states changes significantly in the region where the crossing 

occurs. These changes in the weights of dominant configurations can occur in 
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the case of changing bonding interactions, as is the case with ozone. 

Paper V examined the intersection of these two states of ozone in the 

full Cg coordinate space. Because the C, coordinate space has three internal 

coordinates, the intersection crossing space (from Paper 11) is of dimension 3-

2=1, i.e. a one dimensional seam. This intersection seam was mapped out in 

its entirety in the scale-shape symmetry coordinates of paper I. It was 

shown to consist of four branches, one of which is a closed loop. The three 

other branches lie entirely in Cgv restricted subspaces and connect to the first 

branch at points. The change in symmetry of one of the states firom to Bg 

along a segment of the closed branch from one point of Cgy, into C, symmetry, 

and back to was discussed in detail. It was concluded that this change in 

symmetry was driven by changing bonding and anti-bonding character of the 

molecular orbitals due to the close approach of two of the atoms in the 

molecule as the geometry varies along the seam. A novel method for 

determining an intersection point in a two-dimensional coordinate space was 

also presented. Based on the wavefimction phase-change theorem of 

Herzberg-Longuet-Higgins [5], using this method one "corrals" an intersection 

by examining the phase of the wavefimction on successively smaller and 

smaller loops around a point of intersection. Finally, a new, high-energy 

intersection point was found between the l^A^ and 2^Ai states in the Cjv 

restricted coordinate space, implying yet another one-dimensional 
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intersection seam between the lowest two states in the full C, coordinate 

space. 

In paper VI, we finally presented a global mapping of the two potential 

energy surfaces in the scale-shape perimetric coordinates. It was shown that 

the only minimum energy path from the ground state ring structure leads 

directly to the open structure, making direct formation of the ring structure 

firom O2 and 0 improbable. It was also shown that there is no 

rearrangement pathway on the ground state representing the interchange of 

two atoms. The global minimum of the 2^A' surface was shown to be in Cgv, 

and the dissociation pathways of the two surfaces were also discussed. 

Finally, the difference between the two surfaces was examined and discussed. 

The peculiar shape of the intersection seam discovered in paper V was 

confirmed. It was concluded that radiationless transitions between the states 

can be expected in the region of coordinate space surrounding the 

intersection seam. 

This investigation of the two lowest ^A' surfaces of ozone has uncovered 

a number of novel features and enhanced our understanding, not only of 

ozone, but of intersections and triatomic molecules in general. The 

investigations of the intersection point in Cgy and the intersection seam in C, 

are noteworthy because they are the most careful examinations of 
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intersections to date. It is hoped that the analysis of the intersection point in 

Cgv will be helpful in the prediction and determination of intersections of 

other molecules. The shape-scale perimetric coordinates will surely prove 

useful for future studies of other triatomic molecules besides ozone. The 

information gained about the global nature of the PES will prove useful in 

future studies of ozone. 

Much work is left to be done with this system. The ring structure of 

ozone is still undetected by experiment. It should perhaps be possible to 

realize this configuration using two-photon excitation from the ground 

state to an intermediate low-lying state of different symmetry, followed by 

immediate excitation to the state. Subsequent radiationless transitions 

through the intersection seam to the ground state should result in some 

observed occupation of the ring structure. Therefore, accurate calculations of 

these excitation energies are needed to guide this experiment. Furthermore, 

determination of the second intersection seam might well reveal a yet 

unsuspected pathway to the excited states and/or the ring structure. 

Further work also needs to be done on the low-lying excited states, 

especially the triplet states. Detailed information on these surfaces is still 

lacking, and is essential to our understanding of this important molecule and 

its role in atmospheric chemistry. 

This dissertation has confirmed that basic theoretical work is a 
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essential for the progress of quantum chemistry. There is a growing 

tendency in this age of high-performance computing to spend a great deal of 

time and effort simply computing energies, vibration frequencies, reaction 

paths, and other properties. While this is an important aspect of quantum 

chemistry, much may be gained by careful analysis of the results. 

The lessons of this work are many. A thorough understanding of the 

basic theory involved can be an invaluable predictive aid, as was the case of 

predicting the one-dimensional intersection seam of ozone in the full C, 

coordinate space. Careful planning and attention to details, such as the 

choice of internal coordinates, can greatly aid in the interpretation of the 

calculations. And although quantitative energy calculations are an essential 

part of quantum chemistry, they must be coupled with analysis, and with 

the development of simple qualitative models in order to gain a clear 

understanding. The wavefunctions generated in such calculations can yield a 

better understanding of the electronic structure of the molecule of interest, as 

was the case when examining the causes of the intersection. Furthermore, 

simply identifying the maxima, minima, and transition states may not be 

enough to completely understand the potential energy surfaces of the states 

involved. Although it is quite expensive when there are more than two 

degrees of freedom, examination of potential energy surfaces on a global scale 

is the only way to truly understand the PES. 
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